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Abstract

Cryptography plays a crucial role in securing communications and data in
our modern society. High-quality randomness is essential for cryptographic
systems, as it ensures security by being the only piece of information that
a malicious party lacks to understand the entire system. Embedded devices,
however, face significant challenges in generating this randomness due to their
limited resources and minimal external input. As a result, these devices must
rely heavily on on-chip generated randomness, making the design of TRNGs a
critical area of research.

This dissertation makes several theoretical contributions to the field of TRNGs.
Firstly, it proposes a more accurate entropy model that applies to a broader
range of noise types. Our findings suggest that more noise types than previously
recognized have potential utility in TRNGs, although further research is
necessary to determine their precise entropy contributions. Additionally, this
work offers a refined time-based characterization of various noise types on an
ASIC platform, revealing that under practical operating conditions, a different
noise type dominates compared to earlier assumptions.

On the practical side, this dissertation enhances TRNG design through increased
control over key parameters, allowing designers to achieve optimal operating
conditions with significantly less effort. The robustness of TRNGs against
varying operating conditions has also been improved, making the output usable
across a broader range of environments. Moreover, the research provides deeper
insights into the trade-offs involved in performance optimization, facilitating a
more streamlined design process compared to previous iterative approaches.
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Beknopte Samenvatting

Cryptografie speelt een cruciale rol in het beveiligen van communicatie en
data in onze moderne samenleving. De kwaliteit van willekeur is essentieel
voor cryptografische systemen, omdat dit de beveiliging waarborgt door het
enige stukje informatie te zijn dat een kwaadwillende partij ontbreekt om het
systeem volledig te begrijpen. Ingebedde apparaten staan echter voor serieuze
uitdagingen bij het genereren van deze willekeur, vanwege hun beperkte middelen
en minimale invoer. Als gevolg hiervan zijn deze apparaten sterk afhankelijk
van willekeur die op de chip wordt gegenereerd, wat het ontwerpen van werkelijk
willekeurige getallengeneratoren (True Random Number Generators, TRNG’s)
tot een kritisch onderzoeksgebied maakt.

Dit proefschrift draagt op verschillende theoretische wijzen bij aan het
onderzoeksgebied van TRNG’s. Ten eerste introduceert het een nauwkeuriger
entropiemodel dat van toepassing is op een breder scala aan ruistypes. Onze
bevindingen suggereren dat meer ruistypes dan voorheen gedacht potentieel
bruikbaar zijn in TRNG’s, hoewel verder onderzoek nodig is om de exacte
bijdragen van deze ruistypes te bepalen. Daarnaast biedt dit werk een verfijnde,
op tijd gebaseerde karakterisering van verschillende ruistypes op een ASIC-
platform. Hieruit blijkt dat onder praktische werkingsomstandigheden een ander
ruistype domineert dan voorheen werd aangenomen.

Aan de praktische kant bevordert dit proefschrift het ontwerp van TRNG’s door
de controle over cruciale parameters te versterken, waardoor ontwerpers optimale
prestaties kunnen bereiken met aanzienlijk minder inspanning. Daarnaast is
de robuustheid van TRNG’s tegen veranderende operationele omstandigheden
verbeterd, wat de bruikbaarheid van de gegenereerde willekeur vergroot in een
breder scala aan omgevingen. Bovendien biedt dit onderzoek diepgaand inzicht
in de afwegingen die betrokken zijn bij het optimaliseren van de performantie,
wat leidt tot een meer gestroomlijnd ontwerpproces in vergelijking met eerdere
iteratieve benaderingen.
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Chapter 1

Introduction

Let me begin this thesis with a plea to the significance of randomness in our
daily lives. When considering the presence of randomness in daily routines, the
first examples that come to mind are often obvious ones such as flipping a coin,
rolling a die, or spinning a roulette wheel. Others might associate randomness
with luck, fortune, and the random chances that influence the course of one’s
life. Upon deeper reflection, concepts like probability, uncertainty, variability,
surprise, and chaos often emerge. These aspects relate to various experiences
individuals encounter, such as the emergence of specific weather patterns,
traffic congestion and travel times, the outcomes of sports matches, unexpected
breakdowns, last-minute cancellations, the quality of manufactured goods, and
numerous other instances.

However, as I will elucidate in this introduction, randomness also plays a
crucial role in many daily aspects and activities beyond those mentioned above.
Consider the following actions, which almost everyone performs, often on a daily
basis: sending and receiving messages via WhatsApp, Signal, or other chatting
applications; making payments using a bank card; using a smart card to unlock
office doors; browsing the internet; digitally signing documents with a (Belgian)
identity card; connecting to a Wi-Fi hotspot; and unlocking cars with a key fob.
Some actions, while less common, are highly relevant to more technologically
inclined individuals: encrypting and signing emails; using SSH to connect to
remote devices; and mining or transferring bitcoins.

The actions listed above share common requirements for confidentiality
(e.g., ensuring that only intended recipients can read your chat messages),
integrity (e.g., preventing alterations to the amount paid using your bank
card), authentication (e.g., ensuring that your office door opens only when
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your card is presented and not someone else’s), or non-repudiation (e.g.,
preventing someone from denying that they signed a contract). Cryptography,
a branch of mathematics, computer science, and electrical engineering, enables
these everyday actions. For instance, encryption algorithms provide data
confidentiality and integrity, while signature algorithms ensure authentication
and non-repudiation.

These cryptographic algorithms and protocols rely heavily on basic building
blocks (primitives), such as block ciphers, hash functions, and key exchange
mechanisms. The design and operation of these cryptographic primitives are
publicly available, meaning they do not depend on obscurity or hiding their
internal workings to function effectively. Instead, cryptographic algorithms and
protocols depend on the secrecy of small pieces of data, akin to passwords,
often referred to as secret keys. This practice of making all details about
cryptographic algorithms public is known as Kerckhoffs’ principle, named after
the cryptographer Auguste Kerckhoffs, who formulated it already in the 19th
century [37].

Given the current landscape where anyone can perform any cryptographic
operation, including the one used to encrypt your sensitive data, it is crucial to
rely on the fact that only a select number of intended parties have knowledge
of the secret key used for the encryption. Similar to passwords, it is essential
to minimize the likelihood of anyone successfully guessing your secret key.
Passwords that follow common keyboard patterns (such as qwerty or 12345678)
or include recognizable words or phrases (such as Pa55w0rd or l3tmE1n) are
significantly more vulnerable to guessing compared to passwords without such
patterns, such as 9pXJkL!zT$7fMn# or B8v^qR&5sW!yL2P.

The same principle applies to secret keys composed of binary digits. A key with
repetitive patterns such as 001001001001 is much easier to predict than a more
randomized key such as 011101010100. Additionally, it is crucial to minimize
the chance of someone choosing a similar secret key to yours.

It should now be evident that the properties required for secret keys, such as
unpredictability and uniqueness, are largely fulfilled when we select randomly
generated data to serve as our keying material. A perfectly random bit string
has the smallest probability of being guessed on the first try, specifically 2−n for
a length n. Additionally, it has the lowest probability of a collision, meaning two
entities independently choosing the same key [23]. According to the birthday
paradox, this probability is smaller than k2

2n when k entities choose a key of
length n and k ≤ 2n−1 + 1.

One cannot quantify the randomness of a piece of data by itself. For instance,
what makes the bit string 00000000 more or less random than any other bit
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string, such as 10110111 or 10100011? After all, any eight-bit pattern has an
equal probability of 2−8 to be generated by an ideal Random Number Generator
(RNG). Randomness is a property of the process that generates the random
data, not of the data itself.

The concept of perfect randomness, along with related notions such as entropy
and information, are introduced in the following section. For a formal definition
of these concepts, interested readers are directed to appendix A.

1.1 Randomness and Integrated Circuits

In this thesis, perfect randomness refers to the property of devices capable of
generating any n-bit pattern with a probability of 2−n, independently of any
past or future generated patterns. The term full entropy is often used to denote
that the output of such a device carries a maximal amount of information,
meaning it is impossible to compress the output to a smaller size (in terms
of the number of symbols used to uniquely represent the data) without losing
information. Perfect randomness, however, does not exist in reality, and we
must be satisfied with far less ideal solutions. Rest assured, this is precisely
where the engineer comes into play and why the research field addressed in this
thesis exists.

Generating sufficiently robust randomness proves to be a challenging and often
underestimated task in practice, as evidenced by instances where cryptographic
guarantees failed due to deficient RNGs [14, 30]. This challenge is further
exacerbated by the numerous design constraints found in real-world applications.
Some systems leverage diverse randomness sources, including human input (e.g.,
mouse cursor movement), external input (e.g., network packet arrival times or
hard drive access times), and internal timings (e.g., timing of interrupts), which
are aggregated into a high-quality entropy pool, exemplified by /dev/random
on Unix-based systems [25].

In contrast, certain devices do not possess external sources of randomness and
thus rely solely on dedicated internal hardware for generating randomness. This
is particularly pertinent for small embedded devices like smart cards, biomedical
implants, and sensor nodes. The research findings presented in this dissertation
primarily address solutions tailored for such embedded devices.

We distinguish between two flavors of randomness: true (also known as fresh or
pure) and pseudo (also known as deterministic), generated respectively by devices
known as True Random Number Generators (TRNGs) and PseudoRandom
Number Generators (PRNGs). A TRNG produces new, unpredictable
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information and offers information-theoretic security, ensuring that its output
remains random even against adversaries with unlimited time and computational
resources. In contrast, a PRNG expands a given amount of randomness in a
deterministic manner and relies on the cryptographic strength of its underlying
components for computational security. The research presented in this thesis
exclusively addresses TRNGs.

TRNGs implemented on embedded devices frequently depend on extracting
electronic circuit noise. Decades of research have been dedicated to minimizing
the impact of electronic noise on Integrated Circuits (ICs). The entire IC
design and manufacturing process has been developed to ensure reliability
and repeatability. In some way, the TRNG designer must deviate from these
paradigms and employ circuit techniques that are often considered peculiar by
others.

The principal circuit block analyzed in this thesis is the Ring Oscillator (RO).
ROs consist of a ring of simple circuit elements capable of producing a rail-to-
rail oscillating voltage signal. The natural variations in the oscillation timing,
referred to as timing jitter throughout this dissertation, will serve as the main
source of randomness in the circuits discussed in the following chapters.

1.2 Research Questions and Objectives

This dissertation addresses a series of research questions, each tied to a
publication where I served as the primary author, and discussed in a subsequent
chapter. For each question, one or more objectives have been formulated. These
objectives involve research actions, such as specific measurements, mathematical
analyses, or the design of specific circuits or chips, all aimed at answering the
posed research question. To support the results presented in this dissertation, a
total of three distinct chips were manufactured.

Research Question 1: Oscillator Phase Noise Magnitude

Various noise types, often referred to as noise colors, can influence the phase of
a free-running RO, implemented on an Application-Specific Integrated Circuit
(ASIC) platform. When estimating the entropy for Entropy Sources (ESs),
it is crucial to accurately measure the magnitude of each of the noise types
involved. Furthermore, at a given accumulation time length, one noise type
often dominates over the others, exhibiting a magnitude several orders greater
than the other types.
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Question. What are the magnitudes of noise types relevant to oscillator-based
ESs, and which noise type is the most significant on an ASIC platform?

Objective 1.1. Develop an on-chip measurement circuit capable of quantifying
the relevant noise types.

Objective 1.2. Construct a mathematical analysis of the measurement circuit
to differentiate between the noise types from the measurement data.

This research question is addressed in my IEEE TCAS I 2024 paper, which
serves as the foundation for chapter 3 in this thesis.

Characterization of Oscillator Phase Noise Arising From
Multiple Sources for ASIC True Random Number Generation
Adriaan Peetermans, and Ingrid Verbauwhede
IEEE Transactions on Circuits and Systems I (TCAS I), 2024

Research Question 2: Flicker FM Noise Contribution

Almost all attempts at modeling ESs over the last decade have been based
on the assumption that white Frequency Modulated (FM) noise dominates in
free-running ROs. White FM noise distinguishes itself from other noise types
due to its inherent time-independence. Consecutive samples drawn from a
white FM noise source can be considered independent, significantly reducing
the complexity of proposed entropy models. However, as discussed in chapter 3
and recently verified on other hardware platforms, flicker FM noise can become
dominant, particularly at longer accumulation time lengths.

Question. What is the contribution of flicker FM noise to the overall entropy
rate produced by oscillator-based ESs, in addition to the well-known contribution
of white FM noise?

Objective 2.1. Develop an analytical model that describes the oscillator phase
influenced by multiple noise types.

Objective 2.2. Create a simulation model of an oscillator-based ES that can
compare the impact of different noise types on the total produced entropy rate.

This research question is addressed in my IACR TCHES 2024 paper, which
serves as the foundation for chapter 4 in this thesis.
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TRNG Entropy Model in the Presence of Flicker FM Noise
Adriaan Peetermans, and Ingrid Verbauwhede
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2024

Research Question 3: Oscillator Frequency Control

Modeling the ES enables a precise determination of the required design
parameter values. However, achieving these precise values in practice often
demands significant effort from the designer. Examples of design parameters
include the RO frequency and the resolution at which timing variations are
sampled. Different techniques for realizing these design parameters are necessary,
depending on whether the target hardware platform is a Field-Programmable
Gate Array (FPGA) or an ASIC.

Question. How can precise control over ES design parameters, particularly the
RO frequency, be achieved on both FPGAs and ASICs?

Objective 3.1. Develop a configurable RO topology controlled by a digital
signal for both FPGA and ASIC platforms.

Objective 3.2. Characterize the configurable RO topology to determine the
achievable period length range and resolution under a diverse set of operating
conditions.

This research question is addressed in my ACM TRETS 2021 paper, which
serves as the foundation for chapter 5 in this thesis.

Design and Analysis of Configurable Ring Oscillators for True
Random Number Generation Based on Coherent Sampling
Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2021

Research Question 4: ES Design Effort on FPGAs

Aside from precise oscillator tuning mechanisms, a complete ES design requires
control logic to manage the RO configuration input. This control logic is
essential for selecting an optimal RO configuration at device startup, thereby
reducing the design effort, as the designer no longer needs to manually find a
an RO that produces a suitable frequency. Additionally, the control logic must
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continuously monitor the performance of the ES and update the configuration
vector whenever the ES ceases to operate optimally.

Question. Can the required design effort be significantly reduced when
implementing an oscillator-based ES on FPGAs, by using the proposed RO
tuning mechanisms?

Objective 4.1. Formulate a controlling algorithm to select the optimal RO
configuration and integrate this algorithm into a complete ES on an FPGA
platform.

Objective 4.2. Experimentally verify the proper functioning of the ES, together
with the controlling logic, under various operating conditions.

This research question is addressed in my FPL 2019 paper, which serves as the
foundation for chapter 6 in this thesis.

A Highly-Portable True Random Number Generator Based on
Coherent Sampling
Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
International Conference on Field Programmable Logic and Applications
(FPL), 2019

Research Question 5: Optimal Design Parameter Selection

Dynamic control over the design parameters is essential, but determining a
suitable value range for these design parameters is equally important. This
optimal range depends on measured platform parameters and constraints set by
the targeted application. Leveraging insights from the stochastic model of the
ES, an optimization procedure should be devised to select an optimal range for
the design parameters.

Question. Can the stochastic model be used to develop a strategy for selecting
optimal design parameters?

Objective 5.1. Develop a custom oscillator-based ES on an ASIC platform,
along with an associated stochastic model.

Objective 5.2. Formulate an analytical design parameter optimization
procedure based on the developed stochastic model.

Objective 5.3. Apply the derived optimal configuration to the manufactured
ES and verify optimal functionality.
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This research question is addressed in my IACR TCHES 2022 paper, which
serves as the foundation for chapter 7 in this thesis.

An Energy and Area Efficient, All Digital Entropy Source
Compatible with Modern Standards Based on Jitter Pipelining
Adriaan Peetermans, and Ingrid Verbauwhede
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2022

1.3 Structure of this Dissertation

The modern TRNG design flow is introduced and contrasted with the currently
considered obsolete TRNG design procedure in chapter 2. Following chapter 2,
this dissertation is divided into two main parts, both centered around the
stochastic model, an indispensable element in this modern TRNG design flow.

Part I addresses the inputs required by the stochastic model. This includes
verifying the assumptions made by the stochastic model, such as determining
which type of noise most significantly affects the generated entropy and verifying
the independence of individual circuit components. This verification is discussed
in chapter 4 by analyzing the contributions of common noise types in an
oscillator-based ES design. Another crucial input for the stochastic model is the
experimental estimation of key platform parameters. The measurement of one
such parameter, phase noise magnitude, is thoroughly examined in chapter 3.

The capabilities enabled by employing a stochastic model in TRNG design
are discussed in part II. The stochastic model facilitates the formulation of a
procedure for selecting optimal ES design parameters, including parameters set
during the design phase, such as RO frequency and noise accumulation time
length. Chapter 5 explores various RO topologies that enable the realization of
selected design parameters, specifically RO frequency, on both FPGA and ASIC
platforms. These RO topologies are implemented in complete ES architectures
in chapters 6 and 7 for FPGA and ASIC hardware platforms, respectively.
Additionally, chapter 6 introduces a method for dynamically updating the
design parameters during device operation. Chapter 7 also provides a concrete
example of the design parameter optimization procedure based on a stochastic
model describing the ES.

Lastly, this dissertation is concluded in chapter 8, where the key contributions
presented throughout the work are summarized, and their respective implications
are discussed. Additionally, further research directions on this captivating topic
are also provided.



OTHER CONTRIBUTIONS 9

Note. As could be observed from the chronology of the publications addressing
the research questions introduced in section 1.2, the chapters in this dissertation
are not arranged according to the timeline of the research. Instead, an order
that closely follows the TRNG design flow was preferred. The reader should
keep in mind that the results presented in the final chapters, particularly in
chapters 6 and 7, date back to before the author gained the additional insights
presented in part I of this dissertation.

1.4 Other Contributions

I have contributed to the following publications, which are not included in
this dissertation. For a comprehensive list of publications to which I have
contributed, please refer to the List of Publications on page 201.

Attacking Hardware Random Number Generators in a Multi-Tenant Scenario
Implementing TRNGs in a multi-tenant scenario, where multiple users share a
common FPGA die, introduces new vulnerabilities and potential attack vectors.
In this study, we investigated the impact of three distinct attacks on two
ES implementations on an FPGA. Notably, voltage manipulation attacks, by
generating circuit activity-induced voltage variations, significantly disrupted
entropy generation.

This publication is a result of a master thesis I co-supervised.

Attacking Hardware Random Number Generators in a Multi-
Tenant Scenario
Yrjo Koyen, Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2020

Contribution: master thesis student supervision.

SCALLER: Standard Cell Assembled and Local Layout Effect-based Ring
Oscillators Particularly on an ASIC platform, numerous alternative techniques
for adjusting the RO frequency are available beyond those outlined in chapter 5.
This study introduces a standard-cell compatible RO configuration approach
enabling highly accurate frequency tuning. The method leverages layout-induced
effects on transistor drive current strength by manipulating the proximity of
the transistor channel to the edge of the doped well. Experimental findings
from fabricated devices validate the effectiveness of this tuning technique.
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This publication is a result of a collaboration with the Tallinn University of
Technology (TalTech), I was involved at the design phase and helped to prepare
the measurement set-up.

SCALLER: Standard Cell Assembled and Local Layout Effect-
Based Ring Oscillators
Muayad J. Aljafar, Zain Ul Abideen, Adriaan Peetermans, Benedikt Gierlichs,
and Samuel Pagliarini
IEEE Embedded Systems Letters, 2024

Contribution: design review and measurement set-up assistance.



Chapter 2

Modern TRNG Design

The core perspective of this thesis revolves around the modern ES design and
verification procedure, showcased in fig. 2.1. Central in this process is the
stochastic model. Part I in this thesis addresses prerequisites of the model,
these encompass the inputs necessary for the stochastic model, which include the
assumptions made, and measurement of defined platform parameters. Part II in
this thesis deals with capabilities of the model, covering the outputs generated
by the stochastic model, which include design parameter optimization methods
and discusses how to practically realize the required design parameter values
across different hardware platforms.

2.1 TRNG Architecture and Terminology

The generic architecture of a TRNG is provided in fig. 2.2. The core building
block of a TRNG is the ES, where entropy is generated by an analog phenomenon.
This thesis focuses solely on electrical noise sources, such as thermal or flicker
noise, for generating entropy. Whether entropy is genuinely being generated or is
merely an artifact of the limitations in noise models accurately capturing circuit
component behavior is considered a philosophical question and is, therefore, not
further discussed in this thesis.

After digitization, we obtain raw random numbers, specifically raw random bits
in this thesis. These raw random bits are often far from perfect, as they might
be biased or contain dependencies. To improve their quality, post-processing is
employed, which lowers throughput in exchange for higher entropy density. A

11



12 MODERN TRNG DESIGN

Design parameter
optimization

Design parameter
optimization

Statistical
tests

Statistical
tests

Stochastic modelStochastic model

Entropy
requirement
standard/
application

Entropy
requirement
standard/
application

Assumption
verification
Assumption

verification
ExperimentsExperiments

Entropy
requirement

Model
assumptions

Platform
parameters

Design
parameters

Entropy
claim

Entropy
source
Entropy
source

Configuration

Random
bits Prototype

verification
Pass Fail

Figure 2.1: Modern ES verification approach.

third block provides testing functionality and alerts the application consuming
the randomness if the output no longer contains the specified entropy density.

Table 2.1 provides a comparison between the relevant terms used in this thesis
and those used by international standards [39, 83]. These standards are further
introduced in section 2.2.2. The work presented in this dissertation will, to a
large extent, focus on the ES rather than post-processing or health testing.
Note. In this thesis, the term noise source is defined according to its circuit-
related context. Specifically, noise source refers to the hypothetical noise voltage
or noise current sources added in series or parallel to an ideal circuit component
(such as resistors or transistors) to model the behavior of real-world components.
This definition contrasts with the standards [39, 83], where noise source refers
to the sub-circuit of a TRNG identified as an Entropy Source (ES) in this text.

2.2 Obsolete versus Modern ES Design

Figure 2.3 illustrates the obsolete ES design and verification flow, which can
be compared to the modern flow shown in fig. 2.1. The modern approach
distinguishes itself from the obsolete one by incorporating a stochastic model
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Figure 2.2: Generic TRNG architecture.

Table 2.1: Comparison in terminology.

This thesis NIST SP 800-90B [83] BSI AIS 20/31 [39]
Entropy Source (ES) (Physical) Digital noise source Physical noise source

TRNG Nondeterministic Physical random
random bit generator number generator

PRNG Deterministic Deterministic random
random bit generator number generator

Raw random Raw data DAS-random numbersnumbers
TRNG output Entropy source output Internal random numbers
Entropy density Entropy rate Entropy per bit
Entropy rate Entropy rate × throughput Entropy rate

(also referred to as a mathematical model) for the ES. Before its inclusion
became mandatory due to international standards, this stochastic model was
generally absent in most ES designs. The stochastic model forms the cornerstone
of the modern approach, offering a probabilistic description of how the entropy
extraction mechanism operates, converting entropy from the underlying noise
sources into the generated random data.

2.2.1 Obsolete Approach

Verification of the correct working of an ES often relied on execution of statistical
test suits such as Diehard [53], National Institute of Standards and Technology
(NIST) SP 800-22 [74] or the tests specified in Federal Information Processing
Standard (FIPS) 140-2 [58]. The general workflow is illustrated in fig. 2.3. The
validator generates a predetermined amount of test data from the ES, which is
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Figure 2.3: Obsolete ES verification approach.

then subjected to various statistical tests. These tests typically search for specific
patterns within the data, the absence of these patterns is then interpreted as
evidence of the ES functioning as intended. If substantial evidence is collected
suggesting that the data cannot be considered random, i.e., if some tests fail,
internal design parameters of the ES are tuned and the process was repeated
with newly generated data. In the past, passing statistical tests was often
perceived as a proof of the correct functioning of the ES under examination.
However, it is now generally acknowledged that these tests are merely capable
of proving the opposite; they indicate that an ES is not functioning as intended.

Several studies have revealed that relying solely on the results of statistical
tests can lead to a dangerous overestimation of the actual entropy generated by
the ES. A remarkable example is the design utilized by Motorola [82], which
employs two free-running ROs. As elucidated by [19], an attack that significantly
increases the success rate of predicting the generator output correctly is feasible,
despite the generator passing multiple statistical test suites. Another study [10]
demonstrated that statistical tests falsely suggested the presence of fresh entropy
when applied to data produced by a deterministic model of an RO-based design,
wherein all random jitter in the ROs was reduced to zero. Despite ample
evidence highlighting the flaws in the approach outlined in this section, recent
research [40, 60, 81] continuous to be published using this obsolete approach.

2.2.2 International Standards

TRNG standardization is a rapidly evolving domain. The research outlined
in this thesis started in 2018 and over the past six years, three prominent
standardization bodies: NIST, Bundesamt für Sicherheit in der Information-
stechnik (BSI) and International Organization for Standardization (ISO) have
adjusted the criteria for evaluating TRNGs. Both BSI and ISO now mandate the
inclusion of a stochastic model as a fundamental criterion for TRNG evaluation.
While NIST allows for the formulation of the model to be optional, it explicitly
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acknowledges the stochastic model as a valid supporting argument for any
entropy claim put forth. Efforts are ongoing to align the various standards,
streamlining the process for a single design to achieve certification from multiple
standardization bodies.

NIST SP 800-90B Section 3.2.2: Requirements on the Noise Source of the
NIST SP 800-90B recommendation for entropy sources [83], published in 2018,
lists the requirements imposed on a noise source. The third requirement reads:

“Documentation shall provide an explicit statement of the expected
entropy provided by the noise source outputs and provide a technical
argument for why the noise source can support that entropy rate.
To support this, documentation may include a stochastic model of
the noise source outputs, and an entropy estimation based on this
stochastic model may be included.”

The submitter should make a minimal entropy estimate, which can be derived
from a stochastic model.
Note. The formulation of a stochastic model is not obligatory.

BSI AIS 20/31 As early as 2001, the German BSI introduced the
standardization of TRNGs, with the publication of the Application notes and
Interpretation of the Scheme (AIS) standard: AIS 31 [38] and a conference
paper: [77]. In this initial release of the AIS 31 standard, two TRNG classes were
distinguished, with the stricter class (P2) mandating a mathematical model as
an alternative requirement for certification. Only for specific TRNG designs
under examination, where performing statistical testing on the Digitized-Analog-
Signal (DAS)-random numbers proves infeasible, resorting to the mathematical
model serves as an alternative requirement to identify dependencies in the
generated data.

In a subsequent version of the standard [39], which has been in effect since
2011, the classification of TRNGs expanded to three hierarchical classes: PTG.1,
PTG.2 and PTG.3. A TRNG meeting the criteria of a higher class, automatically
fulfills the requirements of the lower classes. Both PTG.2 and PTG.3 classes
now mandate the formulation of a stochastic model.

An updated draft of the AIS 20/31 standard became accessible in 2022 [69].
This draft eliminates the PTG.1 class, implying that all TRNG designs now
necessitate the description of a stochastic model to adhere to the AIS 20/31
standard.
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ISO 20543 The ISO standard, released in 2019 [34], addresses the evaluation
of both PRNGs and TRNGs. The essential aspect of the evaluation process
for TRNGs, is the utilization of a stochastic model to substantiate any entropy
claims made.

2.2.3 Stochastic Model

In this thesis, the definition for a stochastic model was adopted from
paragraph 622 in [69]:

“A stochastic model provides a partial mathematical description
(of the relevant properties) of a physical noise source using random
variables. The stochastic model shall allow the verification of a lower
entropy bound for the internal random numbers.”

A stochastic model constructs a set of distributions encompassing the true
distribution of the generated random numbers. The actual distribution may be
influenced by parameters representing process variations, operating conditions,
and aging effects. Hence, the stochastic model should accurately predict the
entropy’s lower bound for the ES across all manufactured devices, under all
permissible operating conditions, and throughout the device’s lifespan. To
prevent undue complexity in the analysis, only relevant aspects should be
incorporated. Consequently, the stochastic model inevitably presents a simplified
version of reality.

In contrast to assessing the design of a PRNG, which can be carried out
independently of its implementation, evaluating a TRNG and its associated ES
using a stochastic model is inherently tied to the specific implementation and
hardware platform utilized. The security of a PRNG is solely computational,
implying that a pure PRNG would offer no defense against an adversary with
unlimited computational resources and/or time. On the other hand, a TRNG
provides security in an information-theoretical sense, ensuring that the freshly
generated entropy remains unpredictable to such an adversary. Frequently, the
terms pseudo randomness and true randomness are employed to denote these
two concepts.

2.3 Part I: Model Prerequisites

This first part of the dissertation concentrates on the inputs needed by the
stochastic model. As depicted in fig. 2.1, three distinct prerequisites are
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fundamental when validating an ES using a stochastic model: determining
the necessary entropy density, validating all assumptions made by the model,
and experimentally confirming the values of physical quantities utilized in the
model.

2.3.1 Entropy Requirement

Demanding a specific minimal entropy density in the random data produced by
the TRNG sets a limit on the success rate of correctly predicting the output
data. This defined lower bound on the entropy density may stem from either a
TRNG standard that the designer aims to adhere to, the intended application
consuming the random data, or both.

Standard

The AIS 20/31 standard [39] mandates a minimum Shannon entropy per
generated random bit for TRNGs in class PTG.2. Requirement PTG.2.7 states:

“The average Shannon entropy per internal random bit exceeds
0.997.”

Implying that after post-processing, the random data supplied to the application
must offer a Shannon entropy density of no less than 0.997 bit per output bit.
The revised AIS 20/31 draft [69] has tightened the entropy criterion. Requirement
PTG.2.3 now specifies that the average Shannon entropy for the generated data
after post-processing should surpass 0.9998 bit per output bit.

Application

Depending on the intended application, the entropy requirement can be further
increased. Various applications may necessitate diverse levels of security. A
TRNG design providing data of appropriate quality for the application should
be selected. Certainly, the TRNG should meet the minimum security standards
demanded by the application. Conversely, developing a TRNG that delivers
more entropy than strictly necessary for the application could result in a waste
of resources.
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2.3.2 Model Assumptions

A stochastic model inevitably relies on assumptions, which are evident
statements regarded as true. For some assumptions, the model can rely on
related research that offers evidence supporting the assumption’s validity. Other
assumptions are more foundational and are simply assumed true until evidence
suggesting the opposite becomes available. When an assumption is proven to
be invalid, any conclusions drawn from the model become uncertain. Hence, it
is crucial for the model to explicitly state its assumptions, making it easier to
challenge them during model validation.

This thesis focuses solely on oscillator-based ES designs. The common
assumptions associated with these designs often revolve around the behavior of
the noise sources impacting the oscillator. For instance, which types of noise
sources are presumed to have the most significant effect on the characteristics
of the generated random data, or how these noise sources are assumed to
behave in the time and frequency domains. Chapter 4 handles these prevailing
assumptions and offers a rationale that stochastic models can reference.

The subsequent subsections enumerate additional common assumptions
employed in modeling oscillator-based TRNG designs.

Noise Sources Power Law

The analysis outlined in chapters 3 and 4 assumes, along with other noise
models [28, 32, 59], that the frequency spectrum of the noise types involved
follows a power law relation with the absolute frequency: fα, for different α ∈ Z.
Frequently, the term colored noise is employed, with various colors assigned
to different noise types. For instance, white is associated with thermal noise
(α = 0), while pink is linked to flicker noise (α = −1).

Independence

The output entropy density of a TRNG design can be affected by a combination
of factors, including multiple noise sources, various circuit elements and external
influences. While certain factors (e.g., specific types of noise sources) may
contribute significantly to the output entropy, others (e.g., external influences)
are considered known and potentially manipulable by an external observer,
and therefore not contributing any meaningful entropy. Consequently, the
stochastic model should evaluate the entropy generated by each contributing
factor separately. To simplify this analysis, it is common to assume independence
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between the different factors. The following paragraphs outline some popular
independence assumptions (often implicitly) stated in the literature and also
utilized in this thesis.

Between Noise Sources Noise sources characterized by distinct α values in
the power law behave differently, some sources introduce dependencies between
consecutively generated output samples, while others do not. The various noise
types are presumed to operate independently of one another, implying that the
behavior of one source does not affect the entropy generated by all other sources.
As discussed in more detail in chapter 4, this commonly leads to the rationale
that solely recognizing the entropy contribution of the thermal noise source is
adequate to establish a lower bound on the entropy produced by the ES.

Between Noise Sources and External Influences Noise sources are presumed
to be uncontrollable by any external means, implying that the instantaneous
value of a given noise source is independent of any external factors. By definition,
any deterministic variation observed in the circuit under investigation due to an
external change (such as an increase in oscillation frequency due to a decrease
in ambient temperature) is not classified as part of a noise source.
Note. Statistical characteristics of a noise source may be influenced by external
factors, for instance, the magnitude of thermal noise increases with absolute
temperature. However, temperature only impacts the distribution of the thermal
noise source, not the instantaneous thermal noise value itself.

Between Different Subcircuits Even sources of the same type (with equal
α), but acting on different subcircuits (such as two distinct oscillators), are
assumed independent. While there may be a deterministic relation between
the two subcircuits, particularly if they are physically close, this relation is not
considered part of the noise sources affecting the subcircuits individually. For
example, capacitive coupling, which is a deterministic effect that can be predicted
at design time, falls under this category. This assumption is also commonly
encountered in the context of presuming that any randomness introduced in
the sampling circuitry (such as metastability in the samplers) is unrelated to
the timing jitter generated by the oscillators being sampled.

2.3.3 Platform Parameter Estimation

As discussed in section 2.2.3, evaluating an ES using a stochastic model cannot
be considered independent of the physical implementation and the underlying
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hardware platform. The stochastic model necessitates the estimation of various
physical platform-related quantities (referred to as platform parameters) before
an entropy estimate can be derived. Estimating these parameters requires
conducting physical experiments on the intended hardware platform, closely
matching the operating conditions of the ES as much as possible. The following
subsections address the two most commonly encountered platform parameters
found in stochastic models for oscillator-based ESs: noise magnitude and
propagation delay.

Noise Magnitude

Chapter 3 addresses the measurement of a fundamental parameter for oscillator-
based ESs: noise magnitude, which is also commonly referred to as noise strength,
linear noise strength, jitter strength, or phase noise magnitude. This parameter
determines the linear rate at which jitter accumulates in a free-running oscillator
and is therefore closely associated with the strength of the thermal noise sources
affecting the oscillator under examination. Additionally, chapter 3 also discusses
the accumulation of timing jitter in a non-linear manner, which arises from
noise sources other than thermal noise dominating the oscillator’s behavior.
The impact that dominating flicker noise has on the ES is further elaborated
upon in chapter 3 as well.

Propagation Delay

The time taken for the output of a logic gate to respond to a change at one of
its inputs is quantified by the propagation delay. For ROs, the summation of
the propagation delays of the individual stages determines the final oscillation
frequency. Additionally, the smallest achievable propagation delay determines
the time resolution for a Time-to-Digital Converter (TDC) based on Delay
Chains (DCs), as employed in the measurements described in chapter 3 and
the ES architecture presented in chapter 7. It is often valuable to distinguish
between the propagation delay affecting positive input edges and that affecting
negative input edges, as these two quantities are not inherently equal. Operating
conditions can influence the measured propagation delay, for instance, higher
ambient temperatures or lower supply voltages often result in an increased
propagation delay. This parameter was estimated multiple times throughout
the work presented in this thesis, employing various methods ranging from
indirectly measuring the propagation delay by observing the oscillation frequency
of an RO to utilizing a Monte Carlo method by observing sampled edge positions.
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2.4 Part II: Model Capabilities

The second part of this dissertation focuses on the outputs generated by the
stochastic model. Figure 2.1 shows that the stochastic model, as previously
described, facilitates the estimation of the expected output entropy density.
Furthermore, the stochastic model provides insights into how the selected
design parameters impact key ES performance metrics (such as entropy density,
throughput, and energy consumption per produced amount of data). This
understanding enables precise optimization of the design parameters to achieve
optimal performance according to the requirements set for the ES.

2.4.1 Design Parameter Realization

Design parameters refer to the parameters within the ES architecture that are
under the control of the designer.
Note. Design parameters differ fundamentally from platform parameters, as
introduced in section 2.3.3. While design parameters are intentionally selected
by the designer, platform parameters are inherent physical quantities derived
from the intended hardware platform.

Once the overall architecture for the ES is determined, the design parameters
dictate the remaining configuration options. In oscillator-based ES architectures,
several key design parameters are typically identifiable: the length of the jitter
accumulation interval (which determines the sampling rate and eventual ES
throughput), the oscillation frequencies of the involved ROs, or the number
of DC stages. Precise control over these design parameters is crucial, as they
significantly impact the resolution at which random timing jitter can be sampled.
As emphasized by [73], enhancing this timing resolution noticeably reduces
the time required for accumulating random jitter, thereby benefiting the ES
throughput or augmenting the entropy gathered per sample.

Improving Realization Effort and Robustness

While the stochastic model can accurately predict the required value for the
design parameters to achieve optimal performance, it does not prescribe a
method for physically attaining these values. Particularly under Process,
Voltage and Temperature (PVT) variations, the optimal value for certain
design parameters may vary. This stands in contrast to traditional digital
circuits, which are generally less impacted by PVT variations.
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The struggle required to achieve appropriate values for the design parameters
was quantified using a feasibility and repeatability score by [70]. In this thesis,
the term design effort, as employed by [93], or alternatively realization effort
will be utilized to denote the effort demanded from the designer to implement a
given ES architecture and realize all design parameters within an appropriate
range.

Certain ES architectures (such as the Transition Effect Ring Oscillator (TERO)-
ES [86] or the COherent Sampling ring Oscillator (COSO)-ES [43]) are
notoriously hard to implement on FPGAs. Designers often had to resort
to exhaustive trial and error across many physical locations on the FPGA
fabric until, by chance, a suitable location was found that yielded an acceptable
realization of design parameters. This painstaking process had to be repeated
for each individual device. Additionally, as demonstrated by [11], any PVT
variation might render the chosen FPGA location unsuitable. A robust ES
design should function regardless of its position on the die and should be able
to handle PVT variations. Consequently, this thesis advocates for ES designs
to be dynamically configurable, enabling them to adapt to varying operating
conditions without necessitating extensive design effort during implementation.

Configurable ROs

An important design parameter for oscillator-based ESs is the frequency at
which the ROs operate. This frequency is determined by the sum of propagation
delays of its individual stages. As previously mentioned, precise control over
the RO frequency enhances both the performance and robustness of the ES.
Depending on the hardware platform, various methods are available to implement
a configurable RO architecture. This thesis considers two hardware platforms:
FPGAs and ASICs.

FPGA Especially on FPGAs, the options for creating a configurable RO
are limited: the only hardware elements available are LookUp tables (LUTs)
and Flip-Flops (FFs), the wiring must utilize existing interconnects which
significantly impact the RO frequency, and the architecture should ideally be
described using only a Hardware Description Language (HDL). While many
FPGAs support the use of Phase-Locked Loops (PLLs) to implement a tunable
oscillator, the number of PLLs available on the device is often limited, and their
primary purpose is to serve as sources of digital clocking signals. Given these
constraints, chapter 5 presents and compares several highly portable, tunable
RO architectures compatible with most popular FPGA families. All RO designs
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demonstrated in chapter 5 exploit the inherent process variations in the LUTs
and interconnects that constitute the FPGA fabric.

ASIC Designing a configurable RO on an ASIC platform offers considerable
flexibility. However, in this thesis, it is essential that the RO architectures
easily integrate with other digital logic. Therefore, the designs are restricted
to using only digital voltages for control, consisting solely of transistors and
interconnects (i.e., no dedicated capacitors or resistors), and having a layout
capable of fitting within a standard cell row. Chapter 5 presents a configurable
RO architecture that meets these constraints and demonstrates the achieved
tunability across multiple ASIC technology nodes.

2.4.2 Exploiting Parameter Realization

The configurable RO topology allows TRNGs to be constructed precisely meeting
the design parameters as determined by using a stochastic model. This ensures
that the TRNG operates near optimal performance, maximizing efficiency given
the available resources. This thesis introduces two distinct ES designs, each
tailored for either the FPGA or the ASIC hardware platform in chapters 6 and 7
respectively. Furthermore, chapter 6 introduces a controller that continuously
monitors a COSO-ES, dynamically adjusting its configuration inputs to maintain
operation within a predetermined region. The introduction of the controller,
alongside the configurable RO design, eliminates the necessity for user-defined
placement constraints, significantly diminishing the demanded design effort.
Chapter 7 provides a comprehensive demonstration, illustrating the utilization
of a stochastic model in the process of selecting optimal design parameters for
a custom ES.

2.5 Conclusion

This chapter contrasts the modern TRNG design flow with the now-considered
obsolete TRNG design flow. The latter heavily relied on statistical testing to
support any claims regarding the quality of the produced randomness, whereas
the former uses a stochastic model description as the centerpiece of the ES
verification procedure. The rise in adoption of this modern flow is mainly
driven by international standards. Although progress is modest, more and more
proposed ES designs now include a stochastic model [24], or at least provide
clear outlines for constructing one [61].
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The twofold contribution of this dissertation is illustrated by sections 2.3 and 2.4.
Section 2.3 outlines part I of this thesis, focussing on the three main prerequisites
required by the stochastic model: establishing the necessary entropy density,
validating the assumptions made by the model, and experimentally determining
the values of key platform parameters.

The contents of part II are discussed in section 2.4, where two main contributions
are highlighted. Firstly, the stochastic model enables the exploitation of available
ES design parameters to achieve a well-tuned ES implementation, enhancing
performance at an equal or lower cost. Secondly, section 2.4.1 explains that
realizing an optimal design parameter, given the limitations imposed by physical
hardware, necessitates the use of dedicated circuit techniques.
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Chapter 3

Jitter Measurement

This chapter is based on the following publication:

Characterization of Oscillator Phase Noise Arising From
Multiple Sources for ASIC True Random Number Generation
Adriaan Peetermans, and Ingrid Verbauwhede
IEEE Transactions on Circuits and Systems I (TCAS I), 2024

Contribution: main author.

3.1 Background and Context

In fully digital architectures, an attractive choice is an ES topology based on
free-running ROs [6, 43, 80, 86]. This approach permits to construct the ROs,
together with the sampling circuitry, by exclusively using digital logic. Due
to their entirely digital structure, these architectures are well-suited for use in
both FPGAs and ASICs.

As demonstrated in chapter 2, international standardization bodies, such as
NIST [83], BSI [69], and ISO [34], mandate the presence of a stochastic model,
capable of estimating the available entropy density in the ES output stream.
In order to generate an accurate entropy estimate, these models rely on a
precise measurement of platform-specific parameters, e.g., gate delay or oscillator
frequency [93]. Constituting a crucial subset of these parameters are the ones
related to the rate at which random oscillator period variations accumulate
through time. These parameters are often referred to as timing jitter strength or

27
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phase noise [94]. Estimating the precise value of these parameters is essential,
considering that in oscillator-based ESs, the oscillator period variations often
are the sole source of fresh entropy and will consequently have a direct impact
on key performance aspects of the ES, such as entropy rate, throughput and
energy efficiency.

Oscillator period jitter or oscillator phase noise has been a subject of study for
numerous years. Studies analyzing the use of ROs in PLLs frequently disregard,
flicker FM noise, based on the rationale that low frequency variations would be
attenuated by the PLL feedback loop [90]. However, in the context of the ES
application, where such a feedback loop is absent, flicker noise can introduce
long term dependencies in the ES output. In [55], a time domain study derives
the magnitude of period length variations in a differential RO, taking into
account various noise sources within the oscillator circuit. The analysis focused
exclusively on white (uncorrelated) noise.

A frequency domain approach was presented in [29], building further on the
theory outlined in [28]. Once more, only white noise sources are considered.
Additionally, [29] relates the frequency and time domain concepts: phase noise
and timing jitter respectively, under the assumption of a Wide-Sense Stationary
(WSS) excess oscillator phase. Section 3.2.2 in this chapter demonstrates that
this assumption, nonetheless, does not hold in the presence of white FM noise.

An approach to estimate the phase diffusion rate under the action of white
FM noise was proposed by [20]. The study revealed that the time constant, at
which the ensemble average amplitude decays, is closely linked to the linear
(jitter variance that increases linearly with absolute time) jitter strength in
the presence of white FM noise. Other attempts of estimating the linear jitter
strength have been carried out in previous research: [84, 94]. Although [94]
presents a promising topology, using DCs, both only consider the existence of
thermal noise, whilst other noise types, e.g., flicker noise or random walk noise,
might affect the free-running oscillator as well.

The existence of other noise types was acknowledged by [27, 46, 59]. In [59],
the use of counters limited the available time resolution, resulting in a high
quantization noise floor in the measurements. An alternative counter method
outlined in [49] employs two counters to effectively double the resolution. As
also concluded by [56], the extended accumulation time necessary for the
counter method renders it impractical for thermal noise measurement. The long
accumulation times are essential to mitigate the impact of the high quantization
noise floor, however, they consequently also result in flicker noise dominating
over thermal noise. The existence of a noise corner (accumulation time lengths
above which flicker noise dominates over thermal noise) was recognized by
both [27] and [46]. However, in these works, no measurements have been
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presented for accumulation time lengths below 120 µs and 3.5 µs, respectively.
Modern oscillator-based ES designs often achieve a throughput higher than
1 Mbit s−1 [24, 93], which means jitter accumulation times lower than 1 µs are
relevant.

Considering the room for improvement left by previous jitter strength estimates,
this chapter introduces a jitter measurement methodology implemented in a
65 nm Complementary Metal-Oxide-Semiconductor (CMOS) ASIC technology.
The TDC is based on DCs, as was proposed by [94]. By using DCs, a time
resolution less than 100 ps could be achieved, which allows investigating jitter
strength for accumulation time lengths as short as 30 ns.

The main contributions of this chapter are:

• A 65 nm CMOS ASIC chip is fabricated, capable of estimating the available
noise strength in free-running oscillators dedicated for use in ESs.

• Using DCs, a time resolution less than 100 ps, determined by the intrinsic
gate delay of one inverter gate, is achieved. This resolution allows for
more than a factor of ten increase in measurement precision compared
to other techniques [27, 46, 84] and is comparable with previous jitter
measurement attempts using DCs [94].

• A wide selection of oscillator phase noise sources are considered. For
each noise type, a time-based analytical model is proposed, allowing to
determine the region where one particular type dominates over other noise
types.

• A broad spectrum of accumulation time lengths has been investigated,
covering a range from 30 ns to 0.3 s. This enabled to detect long-term
dependencies, while simultaneously accommodating high-throughput ESs.

This chapter is structured as follows: section 3.2 lists five different noise types
and derives the oscillator phase variance for each of these noise types analytically.
The differential jitter measurement platform, together with a model describing
the measurement results is shown in section 3.3. Section 3.4 presents the set-
up calibration process and shows the jitter measurement results. The phase
stationarity misconception, often found in literature is discussed and a detailed
comparison to previous attempts of oscillator jitter strength measurement are
shown in section 3.5. This chapter is then concluded in section 3.6.
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3.2 Noisy Oscillator Model

This section explains the application of a power law model to describe the phase
of a free-running oscillator. As discussed in section 2.3.2, this assumption forms
the foundation of the oscillator model developed in this section.

For a formal introduction to the mathematical concepts used in this chapter,
please refer to appendix A.

3.2.1 Power Law Model

The phase of a noisy oscillator can be described as a random process through
time, Φ : Ω× R≥0 → R by

Φ(ω, t) = 2πfnt + ϕ0 + Φe(ω, t),

with fn the nominal oscillator frequency, ϕ0 the initial phase at time t = 0, and
{Φe(t)}t∈R≥0 a random process, describing the excess phase through time. We
now define the relative frequency deviation.

Definition 3.1. (Relative frequency deviation) The relative frequency deviation
is a random process: Y : Ω× R≥0 → R by

Y (ω, t) =
dΦ
dt (ω, t)− 2πfn

2πfn
= 1

2πfn

dΦe

dt
(ω, t).

The expected value for the excess phase is equal to, ∀t ∈ R≥0:

E
[
Φe(t)

]
= E

[
2πfn

∫ t

0
Y (θ)dθ

]
= 2πfn

∫ t

0
E
[
Y (θ)

]
dθ = 0, (3.1)

as is assumed that ∀θ ∈ R≥0 : E[Y (θ)] = 0, by the definition of fn equaling the
expected frequency constant: 2πfn = E

[dΦ
dt (t)

]
, and it is further assumed that
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Φe(0) ∼ 0. The variance for the excess phase is then equal to

∀t ∈ R≥0 : Var
[
Φe(t)

]
= E

[
Φ2

e(t)
]

= E
[(

2πfn

∫ t

0
Y (θ)dθ

)2]

= E
[

4π2f2
n

∫ t

0
Y (θi)dθi

∫ t

0
Y (θj)dθj

]

= 4π2f2
n

∫ t

0

∫ t

0
E
[
Y (θi)Y (θj)

]
dθidθj

= 4π2f2
n

∫ t

0

∫ t

0
RY (θi, θj)dθidθj ,

(3.2)

with RY the Auto-Correlation Function (ACF) for the relative frequency
deviation. If {Y (t)}t∈R≥0 is a WSS random process, this ACF only depends on
the time shift: τ = θj − θi.

The following relation holds for the Power Spectral Density (PSD):

SY (f) =
( 1

2πfn

)2
(2πf)2SΦe

(f) =
( f

fn

)2
SΦe

(f), (3.3)

with SY , SΦe
and f the PSD of {Y (t)}t∈R≥0 , {Φe(t)}t∈R≥0 and the Fourier

frequency respectively. According to [32], the relative frequency deviation PSD
can be accurately modeled by a power law:

SY (f) =
2∑

α=−2
hα|f |α, (3.4)

with hα, the proportionality constant for the corresponding noise type. Table 3.1
provides an overview of the most common noise types and the corresponding
value for α in eq. (3.4). The noise type may either refer to the oscillator frequency:
Frequency Modulated (FM), or to the oscillator phase: Phase Modulated (PM).
The noise type name refers to the shape of the oscillator frequency or phase
PSD.

A physical interpretation for each of the five most common noise types is
presented in [32], section XII. In summary: due to the inherent integration
action of phase errors (the influence of past phase disturbances persists, as there
is no restoring force bringing the excess phase back to zero [28]), circuit-level
noise sources appear as close in-band phase noise in the oscillator output voltage
spectrum. White-, flicker- and burst noise sources at the circuit level therefore
appear as 1/|f |2 (α = 0), 1/|f |3 (α = −1) and 1/|f |4 (α = −2) respectively in
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Table 3.1: Power law noise types.

Noise type α in eq. (3.4)
Random walk FM −2
Flicker FM −1
White FM 0
Flicker PM 1
White PM 2

the phase spectrum (note the relation between the phase and frequency spectra
given by eq. (3.3)). Output stage nonlinearities upconvert white- and flicker
noise sources to a constant (α = 2) and 1/|f | (α = 1) in-band phase spectrum
respectively.

For each type of noise, the excess phase variance function, Var
[
Φe(t)

]
for

t ∈ R≥0, can be derived. The final excess phase variance can be obtained
by summing the contributions of each individual noise type. The following
subsections will handle each of the noise types listed in table 3.1 in order of
relevance.

3.2.2 White FM Noise

The relative frequency deviation PSD is constant: SY (f) = h0. The assumption
is made that, in the presence of only white FM noise, {Y (t)}t∈R≥0 is a WSS
process. Often (e.g., in [16, 27, 29]), the assumption of a WSS phase signal
is made. However, as will be shown, any noise type other than white Phase
Modulated (PM) noise and flicker PM noise will violate this assumption.

The Wiener-Khinchin theorem allows to calculate the ACF in terms of the PSD:

RY (τ) =
∫ ∞

−∞
SY (f)e2πjτf df = h0δ(τ). (3.5)

The variance of the excess phase can now be determined, by substituting the
result of eq. (3.5) into eq. (3.2), ∀t ∈ R≥0:

Var
[
Φe(t)

]
= 4π2f2

n

∫ t

0

∫ t

0
h0δ(θj − θi)dθidθj = 4π2f2

nh0t. (3.6)

Equation (3.6) makes it evident that {Φe(t)}t∈R≥0 cannot be regarded a WSS
process since, in the presence of white FM noise, its variance function depends
on the absolute time, t.
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The linear relation given by eq. (3.6) is a well-known result in time domain jitter
analysis of free-running ROs, when only white noise sources are considered.
In [90], the cycle-to-cycle jitter was acknowledged to scale linearly with the
number of inverter stages in the RO loop, which by itself is proportional to the
oscillation period length. In [20, 55, 66], the quantity

√
4π2f2

nh0 is referred to
as 2D, κ and

√
Fnoise in the respective notation.

3.2.3 Flicker FM Noise

The relative frequency deviation PSD is inversely proportional to the Fourier
frequency: SY (f) = h−1

|f | . As noticed by [52], the general random process
{Y (t)}t∈R≥0 , described in eq. (3.4), cannot be regarded as WSS for α ≤
−1. In practice however, only a bandlimited version of {Y (t)}t∈R≥0 can be
measured [88]. Assuming the bandlimited process is WSS, the ACF for the
relative frequency deviation is computed, using the Wiener-Khinchin theorem,
as

RY (τ) =
∫ ∞

−∞
SY (f)e2πjτf df =

∫ −fl

−fh

h−1

|f |
e2πjτf df +

∫ fh

fl

h−1

|f |
e2πjτf df

= 2h−1

∫ fh

fl

cos(2πfτ)
f

df,

(3.7)

with fh, fl the high, and low frequency limits on SY respectively. Substituting
the result of eq. (3.7) into eq. (3.2) results in, ∀t ∈ R≥0:

Var
[
Φe(t)

]
= 8π2f2

nh−1

∫ t

0

∫ t

0

∫ fh

fl

cos
(
2πf(θj − θi)

)
f

dfdθidθj . (3.8)

Solving eq. (3.8), by changing the order of integration, results in the following
expression for the variance of the excess phase depending on the absolute time
t, ∀t ∈ R>0:

Var
[
Φe(t)

]
= 8π2f2

nh−1t2
(
− sin2(πfht)

2(πfht)2 −
sin(2πfht)

2πfht
+ Ci(2πfht)

+ sin2(πflt)
2(πflt)2 + sin(2πflt)

2πflt
− Ci(2πflt)

)
,

(3.9)

and Var
[
Φe(0)

]
= 0. The cosine integral function, Ci, is defined in appendix A.1.

Letting fh → ∞ and using the property: limx→∞ Ci(x) = 0, eq. (3.9) is
simplified to, ∀t ∈ R>0:

Var
[
Φe(t)

]
= 8π2f2

nh−1t2
(

sin2(πflt)
2(πflt)2 + sin(2πflt)

2πflt
− Ci(2πflt)

)
. (3.10)
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Figure 3.1: Relative difference between eq. (3.9) and eq. (3.11). Lower and
upper frequency limits, fl and fh, equal 1 mHz and 10 GHz respectively.

Additionally, the same assumption as in [88] is made here, namely: the
lower frequency limit, fl, is much smaller than the reciprocal of the maximal
measurement time, tmax. Any contribution to {Φe(t)}t∈R≥0 , of frequencies
sufficiently lower than 1

tmax
, will be perceived as a constant frequency offset

and therefore do not contribute to the measured variance estimate, as this
offset is captured by the nominal frequency, fn, estimate. The time, t, at
which Var

[
Φe(t)

]
is evaluated will be bounded by tmax: t ≤ tmax. Therefore:

2πflt ≤ 2πfltmax ≪ 1. Using the Taylor series of Ci(x) around x = 0, eq. (3.10)
can be further simplified to

∀t ∈ R>0 : Var
[
Φe(t)

]
≈ 4π2f2

nh−1t2(3− 2γ− 2 ln(2πflt)
)
. (3.11)

Figure 3.1 compares the outcome of eq. (3.9) to the simplified expression in
eq. (3.11) for realistic values of fl and fh. Within the time interval: 1 ns to 1 s,
eq. (3.11) approximates eq. (3.9) very well, having a relative error of at most
1 × 10−5.

3.2.4 Random Walk FM Noise

The relative frequency deviation PSD is now inversely proportional to the
Fourier frequency squared: SY (f) = h−2

f2 . We now define the relative phase
acceleration.
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Definition 3.2. (Relative phase acceleration) The relative phase acceleration
is a random process: A : Ω× R≥0 → R by

A(ω, t) = dY

dt
(ω, t) = 1

2πfn

d2Φe

dt2 (ω, t).

The relative phase acceleration PSD is therefore constant:

SA(f) = (2πf)2SY (f) = (2π)2h−2.

Following an identical reasoning as in section 3.2.1 and assuming {A(t)}t∈R≥0 is
WSS, the relative frequency deviation ACF can be related to the relative phase
acceleration ACF:

RY (θi, θj) =
∫ θj

0

∫ θi

0
RA(νj − νi)dνidνj ,

with RA, the relative phase acceleration ACF. Similar as in section 3.2.2, this
ACF is described by a scaled Dirac delta distribution: RA(τ) = 4π2h−2δ(τ).
The relative frequency deviation ACF is therefore equal to

RY (θi, θj) = 4π2h−2

∫ θj

0

∫ θi

0
δ(νj − νi)dνidνj = 4π2h−2 min(θi, θj).

Substituting this result into eq. (3.2), ∀t ∈ R≥0:

Var
[
Φe(t)

]
= 16π4f2

nh−2

∫ t

0

∫ t

0
min(θi, θj)dθidθj = 16

3 π
4f2

nh−2t3.

3.2.5 Flicker PM Noise

The relative frequency deviation PSD is now proportional to the absolute Fourier
frequency: SY (f) = h1|f |. Using eq. (3.3), the excess phase PSD becomes:
SΦe

(f) = f2
nh1

1
|f | . Similar as in section 3.2.3, {Φe(t)}t∈R≥0 is assumed WSS

by bandlimiting the PSD to the frequency interval [fl, fh]. The excess phase
variance can then be found, with RΦe , the excess phase ACF, ∀t ∈ R>0:

Var
[
Φe(t)

]
= E

[
Φ2

e(t)
]

= RΦe(0) =
∫ ∞

−∞
SΦe(f)df = 2f2

nh1

∫ fh

fl

df

f

= 2f2
nh1 ln

(fh

fl

)
.
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Table 3.2: Noise types overview.

Noise type α in Var
[
Φe(t)

]
eq. (3.4)

Random walk FM -2 h−2
16
3 π

4f2
nt3

Flicker FM -1 h−14π2f2
nt2(3− 2γ− 2 ln(2πflt)

)
White FM 0 h04π2f2

nt

Flicker PM 1 h12f2
n ln
(

fh

fl

)
White PM 2 h22f2

nfh

3.2.6 White PM Noise

The relative frequency deviation PSD is now proportional to the Fourier
frequency squared: SY (f) = h2f2. Using eq. (3.3), the excess phase PSD
becomes constant: SΦe(f) = f2

nh2. The excess phase is now modeled by WSS
white noise with infinite variance. By bandlimiting the PSD to the frequency
interval [0, fh], a finite excess phase variance is obtained, ∀t ∈ R>0:

Var
[
Φe(t)

]
=
∫ ∞

−∞
SΦe(f)df = 2f2

nh2

∫ fh

0
df = 2f2

nh2fh.

3.2.7 Power Law Model Summary

Table 3.2 overviews the excess phase variance for all noise types discussed.
Figure 3.2 compares the contributions of these noise types, for increasing
accumulation time, t. Depending on the magnitudes of hα, each noise type can
become dominant in a certain accumulation time interval. The total excess
phase variance is only determined by the dominant noise type.

3.3 Jitter Measurement Model

This section proposes an analytical model, describing phase variance accumula-
tion in a differential RO arrangement. Initially, the architecture and principle
of operation is discussed. Subsequently, an analytical model is derived for the
architecture and finally, the impact of quantization noise on the measurements
is addressed.
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Figure 3.2: Exemplifying contribution of the different noise types to the
total phase variance, using log-log axes. The relative values used for the
proportionality constants are: h−2 = 1 × 1027 s−1, h−1 = 1 × 1024, h0 =
1 × 1020 s, h2 = 1 s3. The noise contribution corresponding with h1 was not
drawn as it is similar to h2. The lower and upper frequency limits used are
10 µHz and 100 GHz, respectively.

3.3.1 Differential Jitter Measurement Set-up

Architecture

A differential jitter measurement architecture, comparable to the one proposed
by [94], was used in this chapter. Conducting the measurements using a
differential set-up reduces the influence of external (via the substrate or via
the supply network) noise sources. As only the accumulated phase difference
between the two ROs is of interest, any perturbation equally affecting both ROs
will be canceled out in the phase difference.

As depicted by fig. 3.3, the set-up consists of two free-running ROs: RO0 and
RO1, connected to two DCs: DC0 and DC1. Both ROs are designed in an identical
manner, comprising a NAND gate followed by two configurable inverters. The
signal: RO_ENABLE, connected to both RO’s NAND gates allows to switch the
ROs on or off. The drive strength of the configurable inverter can be modified
by activating or deactivating additional CMOS transistor pairs, as illustrated
in fig. 3.4. This technique allows for a precise control over the produced
RO oscillation frequency and will be analyzed in greater detail in chapter 5.
Additionally, a coarse-grained control over the oscillation frequency is achieved
by attaching a frequency scaler to the RO output, enabling the reduction of the
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RO frequency by a power of two.

Both DCs comprise 128 stages, and each stage is implemented as a single
inverter. The output of each DC stage is connected to the data input of a Data
Flip-Flop (DFF). To counteract the inversion created by employing a single
inverter in each DC stage, the inverted or non-inverted data output of the FF
is utilized alternately. A shared clock signal, DC_CLK, is used to clock each FF.

A NOR gate links the last DC stage output to the input of an asynchronous
counter. The NOR gate disallows further clocking of the counter, once a positive
edge of the DC_CLK signal occurs. Data from both DCs and counters is collected
for subsequent analysis.

Working

A timing diagram in fig. 3.5 shows a phase measurement action. First, both
ROs are enabled at the same time by raising the RO_ENABLE signal. Edges
generated by both ROs propagate through the DCs. The counters keep track of
the occurred number of edges. After some accumulation time, the state of the
DCs is captured by raising the DC_CLK signal. The captured DC state, acts as
a time window, in which the precise location of the RO edge can be determined.
The state of the counter enables to determine the number of edges that precede
the captured DC time window. Combining the DC and counter states allows for
accurately determining the RO phase at the exact capturing moment. In [94],
this principle is discussed in greater detail.

3.3.2 Phase Difference Variance Model

An analytical model is composed to describe the variance of the RO phase
difference as a function of the applied accumulation time length. The phase for
both ROs, is described as follows: Φ0, Φ1 : Ω× R≥0 → R by

Φ0(ω, t) = 2πfn0t + Φe0(ω, t) + Φg(ω, t),

Φ1(ω, t) = 2πfn1t + Φe1(ω, t) + Φg(ω, t),
with fn0, fn1 the nominal frequency, and {Φe0(t)}t∈R≥0 , {Φe1(t)}t∈R≥0 the
excess phase random process for RO0, RO1, respectively. Both phases start at
initial phase zero: Φe0(0) ∼ 0 and Φe1(0) ∼ 0. The global phase perturbation,
common to both ROs, is represented by {Φg(t)}t∈R≥0 . By working with
the phase difference, any global contribution to the oscillator phase can be
eliminated:

∀t ∈ R≥0 : Φ0(ω, t)− Φ1(ω, t) = 2πt(fn0 − fn1) + Φe0(ω, t)− Φe1(ω, t).
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Figure 3.4: Detailed configurable inverter architecture.

RO_ENABLE
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CNT0

CNT1

DC0
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Time

phase
= 10.8 (2π)

phase
= 8.3 (2π)

Figure 3.5: Phase measurement timing.

This phase difference is evaluated at a moment in time: ta ∈ R≥0. However,
due to measurement uncertainty, this moment in time will be a realization of a
random variable, Ta, assumed independent for each measurement. The expected
value for Ta equals µTa

, which is the accumulation time length aimed by the
measurement set-up and is therefore always strictly positive: µTa

> 0. The
expected value for the phase difference, evaluated at Ta is

E
[
Φ0(Ta)− Φ1(Ta)

]
= 2π(fn0 − fn1)µT a,
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as from eq. (3.1), ∀t ∈ R≥0 : E
[
Φe0(t)

]
= E

[
Φe1(t)

]
= 0. The variance is

calculated as

Var
[
Φ0(Ta)− Φ1(Ta)

]
= E

[(
2πTa(fn0 − fn1) + Φe0(Ta)− Φe1(Ta)

− 2π(fn0 − fn1)µT a

)2
]
.

(3.13)

Working out the square in eq. (3.13) and using: E
[
Φe0(Ta)

]
= E

[
Φe1(Ta)

]
= 0,

the following is obtained:

Var
[
Φ0(Ta)− Φ1(Ta)

]
= 4π2(fn0 − fn1)2Var[Ta]

+ Var
[
Φe0(Ta)

]
+ Var

[
Φe1(Ta)

]
+ 4π(fn0 − fn1)

(
E
[
TaΦe0(Ta)

]
−E

[
TaΦe1(Ta)

])
− 2E

[
Φe0(Ta)Φe1(Ta)

]
.

(3.14)
For the fourth term: E

[
TaΦe0(Ta)

]
= E

[
TaΦe1(Ta)

]
= 0, again due to ∀t ∈

R≥0 : E
[
Φe0(t)

]
= E

[
Φe1(t)

]
= 0, from eq. (3.1).

Assuming the excess phases of RO0 and RO1 are independent, zeros the fifth
term as well, as shown by the following relation:

E
[
Φe0(Ta)Φe1(Ta)

]
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ϕ0ϕ1fΦe0(ta)|Ta=ta

(ϕ0)

fΦe1(ta)|Ta=ta
(ϕ1)fTa(ta)dtadϕ0dϕ1

=
∫ ∞

−∞
fTa

(ta)
∫ ∞

−∞
ϕ1fΦe1(ta)|Ta=ta

(ϕ1)

E
[
Φe0(ta) | Ta = ta

]
dϕ1dta

= 0,

because ∀ta ∈ R≥0 : E
[
Φe0(ta) | Ta = ta

]
= 0. Now, eq. (3.14) can be simplified

to
Var

[
Φ0(Ta)− Φ1(Ta)

]
= 4π2(fn0 − fn1)2Var[Ta]

+ Var
[
Φe0(Ta)

]
+ Var

[
Φe1(Ta)

]
.

(3.15)

Equation (3.15) shows an additional advantage of performing differential phase
measurements. The contribution of the measurement uncertainty, Var[Ta], to
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the total measured variance of the phase difference is reduced by a frequency
offset: fn0 − fn1. By choosing a small enough offset, the measurement results
are dominated by the second and third terms in eq. (3.15).

The variances: Var
[
Φe0(Ta)

]
and Var

[
Φe1(Ta)

]
, are still dependent on the

measurement uncertainty, represented by Ta, and might therefore overestimate
the variance at a fixed point in time, t ∈ R≥0: Var

[
Φe0(t)

]
, Var

[
Φe0(t)

]
.

The excess phase variance of an oscillator that can be modeled by a power
law, eq. (3.4), is equal to the sum of the contributions of each different noise
type. In section 3.2, the relation between the accumulation time and each noise
contribution was described. The excess phase variance is then estimated as a
sum of components contributed by each noise type:

∀t ∈ R≥0 : Var
[
Φe(t)

]
= f2

n

(
c0 + c1t + c20t2 + c21t2 ln(t) + c3t3), (3.16)

with the coefficients c0, c1, c20 and c21, c3, corresponding to the noise types:
α = 1, 2, α = 0, α = −1, α = −2 in table 3.2, respectively. All constant factors
in the expressions for the excess phase variance are incorporated into a single
constant: ci, except for the nominal oscillating frequency, fn, which is common
to all noise types. The accumulation time, Ta, is assumed normally distributed:
Ta ∼ N (µTa

, σ2
Ta

). The excess phase variance at a varying accumulation time
becomes:

Var
[
Φe(Ta)

]
= E

[
Var

[
Φe(ta) | Ta = ta

]]
= E

[
f2

n

(
c0 + c1Ta + c20T 2

a + c21T 2
a ln(Ta) + c3T 3

a

)]
= f2

n

(
c0 + c1µTa

+ c20
(
µ2

Ta
+ σ2

Ta

)
+ c21

(3
2σ2

Ta
+ ln(µTa

)
(
µ2

Ta
+ σ2

Ta

))
+ c3

(
µ3

Ta
+ 3µTa

σ2
Ta

))
,

where E
[
T 2

a ln(Ta)
]
≈ 3

2 σ2
Ta

+ ln(µTa)
[
µ2

Ta
+ σ2

Ta

]
, using the Taylor expansion

of t2 ln(t) around t = µTa
. Equation (3.15), again under the assumption of

Ta normally distributed and assuming equal noise strengths in both ROs, now
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becomes:

Var
[
Φ0(Ta)− Φ1(Ta)

]
= 4π2(fn0 − fn1)2σ2

Ta

+
(
f2

n0 + f2
n1
)(

c0 + c1µTa
+ c20

(
µ2

Ta
+ σ2

Ta

)
+ c21

(3
2σ2

Ta
+ ln(µTa

)
(
µ2

Ta
+ σ2

Ta

))
+ c3

(
µ3

Ta
+ 3µTa

σ2
Ta

))
.

(3.17)

3.3.3 Quantization Noise

The DCs only allow to measure the time elapsed since the last edge before the
capturing moment, Ta, was outputted out of the RO. This measured elapsed
time is denoted as a random process through time: {T̂e(t)}t∈R≥0 . The total
time elapsed since the RO was enabled from the perspective of the RO is given
as

∀t ∈ R≥0 : T̂etot
(ω, t) = N(ω, t)

fn
+ T̂e(ω, t),

where {N(t)}t∈R≥0 represents the number of full periods counted by the counters
since the RO was enabled. The random process, {Tetot

(t)}t∈R≥0 , describes the
time elapsed as if the RO is a perfectly stable clocking source. Only in a
noise-free environment, will this random process exactly equal the absolute
time, t. The measured RO phase is then derived as follows, ∀t ∈ R≥0:

Φ̂(ω, t) = 2πfnT̂etot
(ω, t) = 2πN(ω, t) + 2πfnT̂e(ω, t). (3.18)

The DCs enable to measure an edge position up to a precision of one inverter
gate delay. The difference between the measured elapsed time, {T̂e(t)}t∈R≥0 , and
the actual elapsed time, {Te(t)}t∈R≥0 , is modeled by an independent, uniform
quantization error, Q : Ω→ [−dLSB , 0]:

∀t ∈ R≥0 : Φ̂(ω, t) = 2πN(ω, t) + 2πfn

(
Te(ω, t) + Q(ω)

)
,

with Q uniformly distributed: Q ∼ U(−dLSB , 0) and dLSB indicating the DC
stage (inverter gate) delay. The variance of a phase measurement is then
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calculated as, ∀t ∈ R≥0:

Var
[
Φ̂(t)

]
= Var

[
2πN(t) + 2πfn

(
Te(t) + Q

)]
= Var

[
2π
(
N(t) + fnTe(t)

)]
+ Var

[
2πfnQ

]
= Var

[
Φ(t)

]
+ Var

[
2πfnQ

]
= Var

[
Φ(t)

]
+ 4π2f2

n

d2
LSB

12 ,

(3.19)

where ∀t ∈ R≥0 : 2π
(
N(ω, t) + fnTe(ω, t)

)
= Φ(ω, t) from eq. (3.18) with no

measurement error. The term: 4π2f2
n

d2
LSB

12 , functions as a quantization noise
floor, below which no accurate measurement can be made using a DC with
stage delays equal to dLSB .

In [56], although not derived analytically, but obtained via model simulations,
the DC stage delay was also shown to have an influence on the measurement
precision. The authors of [56] conclude that an average DC stage delay of no
more than 18 ps is necessary to have an accurate (less than 10 % relative error)
jitter measurement.

3.4 ASIC Measurements

3.4.1 Test Set-up

The test set-up is shown in fig. 3.6. A Xilinx Zynq System-on-Chip (SoC)
FPGA controls a 65 nm CMOS ASIC. A scan chain on the ASIC is used to
serially read out the sampled DC and counter values. The FPGA drives the
signals RO_ENABLE and DC_CLK and forwards the scan chain data to a Personal
Computer (PC) for further analysis. Prior to each measurement, the PC sends
a configuration vector to the FPGA, which drives an input scan chain on the
ASIC, that configures the inverters and frequency scaler inside the ROs. Unless
stated otherwise, for all measurements, the ROs are configured such that the
configurable inverters have minimal drive strength and the frequency scaler
outputs a frequency divided by two, i.e., the output of the first Toggle Flip-Flop
(TFF) in fig. 3.3.

A photograph illustrating the ASIC die along with the measurement set-up is
presented in fig. 3.7. A Printed Circuit Board (PCB) is used to distribute the
3.3 V supply voltage to the various voltage levels required by the ASIC. The
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CIRCUIT

ASIC

SUPPLY

FPGA

PCB

Figure 3.7: Chip photograph and practical measurement test set-up.

measurement circuit on the ASIC die occupies a rectangular area measuring
170 µm by 125 µm.

Test Set-up Induced Noise

The analysis presented in section 3.3.2 indicates that the non-stable timing
signals, produced by the test set-up, may influence the calculated phase variance.
Especially fluctuations in the rise times of the RO_ENABLE and DC_CLK signals can
result in variations in the accumulation time, Ta, leading to an overestimation
of the phase variance as determined by eq. (3.17). To quantify the test set-up
induced variations, the accumulation time, difference between the rising edges
of RO_ENABLE and DC_CLK, is measured using an oscilloscope. The assumption
is made that the timing reference used by the oscilloscope is independent
of the timing reference used by the FPGA. Therefore, all variations present
in the accumulation time can be captured. Figure 3.8 shows the measured
accumulation time variance versus the set accumulation time. The measured
variance increases with set accumulation time and is in the order of (0.5 ns)2.

DC Characterization

Due to process variations, not all delay chain stages will have equal propagation
delay. Irregularities in the stage propagation delays will give rise to unequal
steps in the resolution of the time to digital conversion, often called Differential
Non-Linearity (DNL) in the TDC-community. To increase the accuracy of the
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Figure 3.8: Measured accumulation time variance.

time measurements performed, the delay chain stage propagation delays are
characterized using a Monte Carlo method, a similar approach as in [94].

Both ROs are enabled by raising RO_ENABLE. The DCs are periodically sampled,
by pulsing DC_CLK, at a low sampling rate: 10 Hz or less. The sampling clock is
independent of the ROs on the ASIC. In this way, it is assumed the ROs are
sampled at a random phase. In case all DC stages would have equal delay, one
expects the position of a captured edge to be uniformly distributed over the
DC. However, in practice, stages with a large propagation delay will have a
larger probability of propagating an edge at the moment of sampling. Using this
relation, stage delay variations can be obtained by observing the distribution of
captured edge positions over multiple samples. Knowing the absolute period
length of the RO, allows for determining the absolute DC stage propagation
delays, both for rising as for falling edges. Box plots, visualizing the measured
stage delay distributions, are shown in fig. 3.9 for three different chips tested.
To estimate these distributions, 1000 Monte Carlo samples are collected for
each chip.

DC Quantization Noise

From section 3.3.3, the quantization noise floor depends on the resolution of the
DCs. An upper bound for the quantization noise floor is found by substituting
the largest measured DC stage propagation delay, dmax

LSB , in eq. (3.19). Table 3.3
gives the largest measured DC stage propagation delay and corresponding time
domain quantization noise floor magnitudes for three chips tested.
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Figure 3.9: Measured stage delay distributions, using 1000 Monte Carlo samples.
The x-axis labels indicate the chip number (C0, C1 or C2) and the DC (DC0 or
DC1). Delay distributions are given for rising and falling edge types: P and N,
respectively.

Note. The dmax
LSB values shown in table 3.3 are notably larger than the 18 ps, as

required by [56]. However, the assumptions made by [56] are rather conservative.
The anticipated linear noise strength is small (2 fs, using assumption c) in [56],
contrasted to 20 fs as obtained in section 3.4.2, for an oscillation frequency
of 500 MHz). Furthermore, requiring the quantization error to be ten times
smaller than the expected period variations represents a significant margin of
safety. Particularly since the measured period variation will only approach the
quantization noise floor at the lower end of the tested accumulation time range.
With more realistic values for the linear noise strength (20 fs) and safety margin
(two times smaller), the average DC resolution should be below 42 ps for an
accumulation time of 30 ns. The largest average DC resolution observed across
all three devices was 37 ps, obtained for chip 2.

Quantization errors are assumed independent between both DCs, therefore
the total phase difference quantization noise floor is found by summing up the
contribution of each DC:

Var
[
Φ̂0(Ta)− Φ̂1(Ta)

]
= Var

[
Φ0(Ta)− Φ1(Ta)

]
+ 4π2f2

n0Var[Q0]

+ 4π2f2
n1Var[Q1],

with Q0 and Q1 the quantization error contributions of DC0 and DC1 respectively.
Table 3.4 shows the measured RO frequencies and the contributions to the total
phase quantization noise floor for each DC individually.
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Table 3.3: DC resolution.

Chip DC0 DC1
dmax

LSB [ps] Var[Q0] [s2] dmax
LSB [ps] Var[Q1] [s2]

0 130 1.40 × 10−21 96 7.67 × 10−22

1 98 7.94 × 10−22 99 8.20 × 10−22

2 115 1.10 × 10−21 109 9.97 × 10−22

Table 3.4: Measured frequency and quantization noise floor.

Chip DC0 DC1
fn0 [MHz] 4π2f2

n0Var[Q0] [rad2] fn1 [MHz] 4π2f2
n1Var[Q1] [rad2]

0 508 1.43 × 10−2 536 8.71 × 10−3

1 521 8.50 × 10−3 547 9.68 × 10−3

2 556 1.34 × 10−2 545 1.17 × 10−2

3.4.2 Phase Difference Measurements

Dominant Noise Type Estimation

The measurement results from section 3.4.1 show that σ2
Ta
≪ µ2

Ta
, for µTa

in the
range from 100 ns to 0.1 s. This knowledge allows to further simplify eq. (3.17):

Var
[
Φ0(Ta)− Φ1(Ta)

]
= 4π2(fn0 − fn1)2σ2

Ta

+
(
f2

n0 + f2
n1
)(

c0 + c1µTa
+ c20µ2

Ta

+ c21 ln(µTa
)µ2

Ta
+ c3µ3

Ta

)
.

(3.20)

The variance of the phase difference was estimated by measuring both RO
phases 100 times at accumulation time lengths ranging from 30 ns to 0.3 s. For
each measurement, both RO phases are subtracted to obtain the measured phase
difference. The phase difference variance was estimated for each accumulation
time length, using the sample variance:

(
σ̂a

∆Φ
)2 =

99∑
i=0

(
ϕ̂i,a

0 − ϕ̂i,a
1 − µ̂a

∆Φ
)2

100 ,

with µ̂a
∆Φ =

∑99
i=0

ϕ̂i,a
0 −ϕ̂i,a

1
100 the sample mean at accumulation time length

measurement a, and ϕ̂i,a
0 and ϕ̂i,a

1 , the measured phase for measurement i
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Figure 3.10: Estimated variance of the phase difference.

Table 3.5: Test set-up noise floor.

Chip 4π2(fn0 − fn1)2σ2
Ta

[rad2]
0 1.52 × 10−2

1 1.33 × 10−2

2 2.30 × 10−3

and accumulation time length measurement a, for RO0 and RO1 respectively.
Figure 3.10 shows the measurement results for three chips tested. Two effects
limit the measurement precision:

• Quantization noise floor : obtained by summing the quantization noise
contributions of both DCs, given in table 3.4.

• Test set-up noise floor : obtained by evaluating the term: 4π2(fn0 −
fn1)2σ2

Ta
in eq. (3.20) for the largest timing variance, σ2

Ta
, observed in the

measurement described in section 3.4.1: 4.8 × 10−19 s2. Table 3.5 provides
the calculated set-up noise floor for each chip tested.

From fig. 3.10, it is clear that almost all measurements fall above both noise
floors and the results should therefore be contributed to the phase difference
variance. Equation (3.20) can then be further simplified, as the test set-up
induced variance is small compared to the measured variance:

Var
[
Φ0(Ta)− Φ1(Ta)

]
=
(
f2

n0 + f2
n1
)(

c0 + c1µTa
+ c20µ2

Ta

+ c21 ln(µTa
)µ2

Ta
+ c3µ3

Ta

)
.

(3.21)
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Table 3.6: Phase variance model fit.

Chip c20 [rad2 s−2] c21 [rad2 s−2]
0 2.04 × 10−5 −5.63 × 10−13

1 1.73 × 10−6 −7.48 × 10−7

2 7.94 × 10−6 −3.93 × 10−6

The gray dashed lines in fig. 3.10 show polynomials of first, second and third
degree. The estimated variance data show the greatest correspondence to a
second degree polynomial. This enables to rule out the terms corresponding with
a first and third degree polynomial in eq. (3.21), as a change of slope should be
observed in fig. 3.10 when these terms would become dominant. Equation (3.21)
can be further reduced to only include the second degree terms:

Var
[
Φ0(Ta)− Φ1(Ta)

]
=
(
f2

n0 + f2
n1
)(

c20µ2
Ta

+ c21 ln(µTa
)µ2

Ta

)
.

For the simplification used in section 3.2.3 to hold, the maximal accumulation
time, tmax, is bounded by the lower frequency limit: 2πfltmax ≪ 1. Combining
eqs. (3.11) and (3.16), the lower frequency limit, fl, is related to the coefficients:
c20 and c21 as follows:

2πfl = exp
(c20

c21
+ 3

2 − γ
)

. (3.22)

The bound on the lower frequency limit implies a bound on the coefficients c20
and c21:

exp
(c20

c21

)
≪

exp
(
γ− 3

2
)

tmax
= 1.32, (3.23)

for a maximal accumulation time equal to 0.3 s. The coefficients: c20 and c21
are estimated by minimizing the fitting error:

min
c20,c21

amax−1∑
a=0

(
ln
((

σ̂a
∆Φ
)2
)
− ln

((
f2

n0 + f2
n1
)(

c20µ2
Ta

+ c21 ln(µTa)µ2
Ta

)))2
,

subject to the bound in eq. (3.23) and with µTa
, the set accumulation time length

for accumulation time measurement a, and amax, the number of accumulation
time length measurements performed. The optimal fit is plotted as a solid line
in fig. 3.10. The optimal values for c20 and c21 are provided in table 3.6.

Flicker Noise Corner

As shown in fig. 3.3, the measurement architecture uses both DCs and counters to
resolve the RO phase. The DCs are used as a fine-grained TDC, to measure the
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Figure 3.11: Flicker noise corner.

RO phase within one RO period, while the counters are used as a course-grained
TDC, to keep track of the RO phase as a multiple of 2π, i.e., one RO period.
For small set accumulation time lengths, µTa , the variations measured are
dominated by the DCs, as the phase variations are within the same RO period
and the counters will show almost no variations. For large set accumulation
time lengths, the counter variations will dominate the measured variations, as
the DC variations are limited to a few RO periods.

Figure 3.11 zooms in on the area where the measured variance is dominated by
the DCs: accumulation time in the interval 30 ns to 1 µs. The model fit from
section 3.4.2 is shown as well. For the data in this accumulation time length
range, a second fit is made, similar to the model fit in section 3.4.2, but also
allowing a linear component: c1µTa

. This linear component, together with the
intersection point between the linear component and the quadratic model fit are
shown as well in fig. 3.11. Below the intersection point, the linear component
dominates the phase variance. Table 3.7 provides derived values for the flicker
noise corner time and the linear fitted noise strength, snoise:

Var
[
Tper

]
≈ snoiseE

[
Tper

]
= c1

4π2 E
[
Tper

]
, (3.24)

with Tper, a random variable representing the period length of the RO in case
of only white FM noise.

For accumulation time lengths above the flicker noise corner, flicker FM noise
will dominate over white FM noise. Meaning that for accumulation time
lengths larger than this corner, accumulated RO jitter cannot be regarded as
independent anymore. This has an important consequence for ES designs, as
many ES stochastic models assume only the existence of white FM noise, e.g.,
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Table 3.7: Flicker noise corner and linear noise strength.

Chip Flicker noise corner [ns] snoise [fs]
0 36.5 18.9
1 59.7 21.4
2 59.9 111

in [4, 6]. Especially for ES designs that require long accumulation lengths, this
assumption can become problematic. In [27], the authors came to the same
conclusion.

A concrete example highlights the consequence of wrongly assuming independent
jitter on the entropy estimation of an Elementary Ring Oscillator (ERO)-ES [6].
Assume a technology with a linear noise strength (snoise) and a flicker noise
corner equal to 20 fs and 50 ns, respectively. Measuring the accumulated period
variance at an accumulation time of 1 µs, yields an overestimated linear noise
strength of 400 fs. Assuming ES throughput of 1 MHz and an oscillator frequency
of 1 GHz, and using the overestimated noise strength results in a significant
overestimation of the produced min-entropy per output bit, yielding 0.9993 bit,
as opposed to the more accurate estimation of 0.1144 bit.

Long Term Dependency and Use of Allan Variance

The trapping and detrapping action of inversion carriers in the Metal-Oxide-
Semiconductor (MOS) channel is believed to be the main source of flicker
noise [35]. Each trapping site has the potential of modulating the Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET) channel conductance, this
effect is often modeled by a random telegraph random process. The superposition
of the random telegraph processes from multiple trapping sites produces the 1/|f |
dependency of the PSD of output referred current noise sources in MOSFETs [41].
This noise current is injected at the internal RO nodes and therefore gets
integrated to generate an 1/|f |3 component in the RO excess phase PSD: SΦe

,
for α = −1 in eq. (3.4). The theory explaining how low frequency noise sources
manifest as integrated in the excess phase spectrum was developed in [28]. To
alleviate the impact of device flicker noise, [28] suggests enhancing the symmetry
of voltage waveforms at the oscillator nodes. This can be accomplished by
appropriately scaling the oscillator transistors.

Depending on the time constant (release time) of the trapping site, its influence
on the MOSFET drive current might stretch for a long time interval [18], hence
the presence of low frequencies in flicker noise. Theoretically, its influence
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Figure 3.12: Sample variance versus sample Allan variance.

might even span multiple consecutive phase measurements of a single RO,
despite the RO being disabled in between two measurements, by driving the
RO_ENABLE signal low. The trapping, detrapping actions might therefore induce
mutual dependencies between the separate phase measurements performed in
section 3.4.2. The model proposed in this chapter, however, assumes no state
information is transferred between two consecutive phase measurements.

In previous work [27, 59], the Allan variance [3] is used to reduce the measured
influence of long term dependencies in the oscillator excess phase. Instead of
looking at the sample variance of a data set containing measured oscillator
phase differences:

{
ϕ̂0,a

0 − ϕ̂0,a
1 , ϕ̂1,a

0 − ϕ̂1,a
1 , . . . , ϕ̂99,a

0 − ϕ̂99,a
1
}

, the sample Allan
variance is calculated as half the sample variance of a data set, containing the
difference between two consecutive phase difference measurements:

{
ϕ̂0,a

0 −
ϕ̂1,a

0 − ϕ̂0,a
1 + ϕ̂1,a

1 , ϕ̂1,a
0 − ϕ̂2,a

0 − ϕ̂1,a
1 + ϕ̂2,a

1 , . . . , ϕ̂98,a
0 − ϕ̂99,a

0 − ϕ̂98,a
1 + ϕ̂99,a

1
}

.
Flicker noise events that affect consecutive phase difference measurements will
hence be filtered out by using the sample Allan variance.

Figure 3.12 compares the standard sample variance, as it was used in section 3.4.2
with the sample Allan variance on the measured phase difference data. Although
the sample Allan variance is consistently smaller than the standard sample
variance, the difference between the two sample variances is minor, indicating
that the impact of long term dependencies on the phase measurements is of a
similar magnitude to the measured flicker noise component within a measurement
interval.
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Table 3.8: Noise type magnitudes.

Chip h−2 ≪ [s−1] h−1 [-] h0 [s] h1 ≪ [s2] h2 ≪ [s3]
0 1.31 × 10−7 7.14 × 10−15 1.89 × 10−14 5.71 × 10−22 2.76 × 10−28

1 1.69 × 10−8 9.48 × 10−9 2.14 × 10−14 4.10 × 10−22 1.98 × 10−28

2 8.13 × 10−8 4.97 × 10−8 1.11 × 10−13 2.12 × 10−21 1.03 × 10−27

Noise Type Contribution Summary

Table 3.8 summarizes the estimates for the coefficients used in eq. (3.4),
describing the relative frequency deviation PSD for an oscillator modeled
by a power law. For the coefficients: h−2, h1 and h2, only upper bounds are
estimated as these noise types are not observed in the measurements. The values
used for the high and low frequency limits are determined from the accumulation
measurement range: fl = 1/(0.3 s) = 3.33 Hz and fh = 1/(30 ns) = 33.3 MHz.
In reality fl, fh is much smaller, larger respectively, however the values given
in table 3.8 remain valid upper bounds.

In contrast to the value obtained for h0, which is directly related to the available
noise strength via c1 = 4π2h0 and eq. (3.24), the reported values for h−1
should be considered as rough estimates, without a direct physical implication.
The magnitude of the derived lower frequency limit, from eq. (3.22), heavily
determines the final estimate for h−1. The first row in table 3.8 reflects this,
showing a low estimate for h−1 compared to the other chips tested, due to a
reduced lower frequency limit obtained from eq. (3.22).

3.5 Oscillator Noise in Other Work

3.5.1 Stationarity Misconception

An assumption, commonly found in literature [16, 20, 27, 29, 31], when relating
frequency domain concepts (e.g., PSD) to time domain concepts (e.g., period
length variation), is WSS of the signals under study (assuming ergodicity
implies assuming stationarity). This assumption allows for the use of the
Wiener-Khinchin theorem to relate the PSD to the ACF. As shown by the
analysis in section 3.2, care has to be taken to ascertain this assumption remains
valid when subjected to the relevant noise types.

In [16, 27, 29], the excess phase was wrongly assumed WSS under the action of
white FM noise. As widely acknowledged in literature and shown once more
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in section 3.2.2 in this chapter, the excess phase exhibits a time dependent
variance function, Var

[
Φe(t)

]
, and therefore cannot be WSS.

To clarify, for the oscillators under study, three related processes exist:

• The excess phase ({Φe(t)}t∈R≥0): only WSS for white and flicker PM
noise.

• The relative frequency deviation ({Y (t)}t∈R≥0): only WSS for flicker FM
(bandlimited), white FM, white and flicker PM noise.

• The oscillator output voltage: when starting from a non-uniform phase
distribution (e.g., a fixed initial phase), the output voltage only becomes
stationary in the limit when a sufficient amount of time has passed to
allow the excess phase to diffuse to approximately a uniform distribution.
This concept was demonstrated by [20], where the influence of the initial
phase was shown to follow an exponential decay. Phase diffusion occurs
with random walk, flicker and white FM noise.

Note. Given the oscillator noise model and starting from a non-uniform initial
phase distribution, the output voltage cannot be stationary when the excess
phase is stationary and vice versa.

3.5.2 Jitter Measurements in Other Work, Comparison

Previous studies have characterized the oscillator phase noise in the context
of random number generation. Table 3.9 provides a comparison of the linear
(thermal or white) noise strength estimates found in other research.

In [6], a differential jitter measurement set-up is proposed consisting of two
free-running ROs. Both RO outputs are brought off-chip and the toggle time
instances are measured using an oscilloscope. This approach, likely leads to
an overestimation of the available jitter strength, as external noise influences
induced by the output chain (e.g., output drivers, voltage level shifters, off-chip
wires, etc.) cannot be ruled out. The reported linear jitter strength value by [6],
was the largest value found in recent literature, indicating an overestimation.
Only thermal noise was considered, however, fig. 3 in [6] shows a slight deviation
from linear jitter accumulation, indicating the presence of other noise types.

In [59], the Allan variance is used to characterize oscillator frequency stability in
an FPGA platform, using counter values. As counters are used to measure the
oscillator phase, the resolution of the phase measurement is limited, reflected in
the high quantization noise floor visible in figs. 7 and 8 in [59]. Nevertheless,
the same quadratic dependency on accumulation time length was observed
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in the counter variance, indicating the flicker FM noise is dominating for the
accumulation times of interest.

In [27], the excess phase, {Φe(t)}t∈R≥0 , was wrongly assumed to be WSS in
the presence of thermal- and flicker noise. Despite this wrong assumption, the
authors of [27] identified the existence of a noise corner, under which the thermal
noise component dominates and accumulated jitter samples can be regarded as
independent. This noise corner, calculated from the data in [27], equals 104 µs.
The measurement results, shown here in fig. 3.10, do not show a noise corner at
this accumulation time length and the flicker noise component remains dominant
well below 104 µs. Apart from the fact that a different technology was used
in [27]: FPGA versus ASIC in this chapter, this discrepancy in measurement
results could also be induced by the limited range of accumulation time lengths
tested. From fig. 7 in [27], the obtained noise corner, N = 5354, is near the
edge of the measurement interval. The obtained thermal noise is therefore the
result of an extrapolation of the measurement results, as all measurements were
performed in the region where the flicker noise component dominates. It has
to be noted, that the same argument holds for the measurement presented in
this chapter. However, the smallest accumulation time length here, 30 ns, is
considerably smaller than in [27].

In both [21] and [46], the coherent sampling technique is used on an FPGA
platform, to measure the linear jitter strength for accumulation time lengths
small enough, such that the flicker noise is not dominant. Measurement results
are presented for accumulation time lengths down to 2.0 µs (M = 250, assuming
T2 ≈ T1 in [21]) and 3.5 µs respectively. Although a flicker noise corner at
approximately 3.5 µs (M = 450 in [21]) and 5 µs are recognized by the authors,
they did not conduct a formal analysis to ascertain its precise value.

In [84], a basic counter method was utilized for on-chip linear jitter strength
measurement. The precision of the time measurement was constrained by the
duration of the oscillator period, which was 10.2 ns. Only thermal noise was
considered, and a single accumulation time of 333 µs was employed.

In [94], DCs are used to resolve the timing jitter, which is similar to the
approach used in this chapter. In addition, the timing resolution is increased
using carry logic that is available in certain FPGAs. The accumulation
time lengths that were tested range from 10 ns to 80 ns. Only thermal noise
was considered, however, fig. 6 in [94] suggests a quadratic behavior above
accumulation time lengths of 60 ns, as the measured variance deviates from the
linear approximation.

In [66], a fast oscillator, together with a counter are used to resolve the differential
timing jitter between two DCs. The accumulation time lengths that were tested
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Table 3.9: Linear jitter strength in other work comparison.

Work Device snoise [fs] resolution [ns] Measurement range
From [µs] To [ms]

This work 65 nm CMOS ASIC 18.9 0.109 0.03 300
[6] Altera (Intel) Stratix II FPGA 281.4 -(a) 29 0.058
[27] Altera (Intel) Cyclone III FPGA 26.0 9.7 117(b) 1.94(b)

[66] 28 nm CMOS ASIC 30 0.164 0.016 1.31 × 10−4

[94] Xilinx (AMD) Spartan 6 FPGA 21.98 0.057(c) 0.01 8 × 10−5

[94] Altera (Intel) Cyclone IV FPGA 0.89 -(d) 0.04 4 × 10−5

[21] Altera (Intel) Cyclone III FPGA 3.12 -(e) 1.95 9.37 × 10−3

[46] Altera (Intel) Cyclone III FPGA 78.68 2.62 3.48 0.019
[84] Actel (Microchip) Fusion FPGA 107 10.2 333 0.333

(a) Resolution of the oscilloscope was not reported.
(b) Values calculated from fig. 7 in [27].
(c) Value based on the maximal delay from fig. 5 in [94].
(d) Resolution of the DC was not reported.
(e) Period length, T2, was not reported.

ranged from 20 ns to 160 ns. Only thermal noise was considered, however, as
identified by [18]: fig. 12 in [66] suggests a super linear behavior at the higher
end of the tested accumulation interval, as the measured variance deviates from
the linear approximation.

3.6 Conclusion

This study presents a comprehensive review of the prevalent noise types in
free-running oscillators, which are characterized using a power law. In this
chapter, the analytical variance of the excess phase for each noise type is derived,
and these findings are employed to develop a model for measuring differential
oscillator phase variance. The model incorporates the variances introduced by
the quantization action and the test set-up.

A 65 nm CMOS technology was used to implement the phase measurement
set-up, and three different devices were measured out. Using DCs in an ASIC
technology allows for a fine time measurement resolution below 100 ps, reducing
the quantization noise floor. The measurement results from all three devices
showed that the oscillator phase noise was primarily dominated by flicker noise
for most accumulation time lengths of interest. For accumulation time lengths
less than 100 ns, a noise corner was observed, suggesting an upper limit on the
jitter accumulation time used by ES designs that assume independent jitter
accumulation.



Chapter 4

Modelling Phase Noise

This chapter is based on the following publication:

TRNG Entropy Model in the Presence of Flicker FM Noise
Adriaan Peetermans, and Ingrid Verbauwhede
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2024

Contribution: main author.

4.1 Background and Context

As thoroughly discussed in sections 2.2.2 and 2.2.3, international standards
strongly recommend including a stochastic model capable of estimating the
ES entropy production. Despite the abundance of ES stochastic models, many
relying on the presence of only white FM noise as seen in [6, 26, 66], the
significance of flicker FM noise was often disregarded or deemed less important.
This is typically justified by the rationale that accounting solely for the entropy
provided by the white FM noise component is adequate for establishing a lower
bound on the entropy produced by the ES [47]. Any entropy generated by
other independent noise components was regarded as a surplus that would not
invalidate the entropy bound previously declared.

Increased attention for the flicker FM noise component [27, 46, 67] underscores
the need to incorporate this type of noise into ES models. Particularly,
recent research [8] has indicated that flicker FM noise can make a meaningful

59
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contribution to the ES’s entropy production, thus emphasizing the importance
of accurately describing it. Although [8] proposes a method for generating
period length samples for an RO under the influence of white FM and flicker
FM noise, it lacks a rigorous mathematical analysis to derive the ES output
entropy density. This absence is particularly unfortunate given the intriguing
claim that an increased flicker FM magnitude tends to reduce the observed
correlation of the generated output bits. Instead, the study relies on simulation
results fitted to empirical data. Moreover, it assumes that the absence of linear
correlation in the output bits proves independence, which is crucial for the
validity of the reported entropy results.

Precisely modeling flicker FM noise is challenging due to its inherent long-term
dependencies, which arise from the physical nature of the charge carrier trapping
and detrapping process in the transistors that comprise the oscillator [22]. A
trapped charge carrier can affect the transistor’s drive strength over multiple
oscillation periods, leading to a sustained increase or decrease in the oscillating
frequency. A notable effort was made by [67], chapter 3 in this thesis, where
a time-based analysis revealed the dependency of an oscillator’s excess phase
variance on the accumulation time length. However, the work presented in
chapter 3 lacks a comprehensive description of the oscillator phase and a
method for characterizing phase dependencies. Additionally, it does not provide
a method for estimating the entropy induced by flicker FM noise. Instead,
chapter 3 focused on quantifying the magnitudes of the prevalent noise types in
free-running oscillators.

Apart from [67], there are only a limited number of flicker FM magnitude
estimates available: [8, 21, 27, 46], which span multiple orders of magnitude.
As demonstrated in this chapter, the specific magnitude employed, notably
impacts the resulting entropy estimate, thereby dictating the extent to which
the contribution of flicker FM noise outweighs that of white FM noise in the
total ES entropy rate.

The primary contributions presented in this chapter are as follows:

• An analytical derivation of the oscillator excess phase ACF, influenced by
flicker FM-shaped noise sources, is presented as a generalization of the
phase variance derivation in chapter 3.

• This chapter proposes a simulation method for the phase process, similar
to the approach presented by [8]. However, our method offers a more
robust mathematical foundation. We achieve this by developing a unified
Gaussian process model that incorporates the ACF for both white FM
and flicker FM noise.
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• Simulation results using the constructed model compare the entropy
produced in an ERO-ES under the influence of white FM and flicker FM
noise, conditioned on the oscillator’s phase or previously produced bit
values.

Section 4.2 presents the excess phase Gaussian process and how this process
is shaped by its ACF. The ACFs for white FM and flicker FM noise are used
to formulate an entropy model for an ERO-ES in section 4.3. Simulation
results presenting entropy values, obtained by applying the proposed model to
typical noise magnitudes found in literature are discussed in section 4.4. Finally,
section 4.5 summarizes this chapter and suggests avenues for future research.

For an introduction to, and detailed descriptions of the mathematical notions and
concepts utilized throughout this chapter, readers are referred to appendix A.

4.2 Excess Phase Process

As in section 3.2, the phase of a noisy oscillator, starting at time t = 0, is
modeled as a real-valued random process over continuous time Ω× R≥0 → R:

Φ(ω, t) = 2πfnt + ϕ0 + Φe(ω, t),

with fn, the nominal oscillator frequency, ϕ0, the initial phase at time t = 0
and

{
Φe(t)

}
t∈R≥0

, a real-valued random process describing the oscillator’s
excess phase. The excess phase is assumed to be unbiased (equal probability
to become positive as to become negative in value) through time. Therefore:
∀t ∈ R≥0 : E

[
Φe(t)

]
= 0.

Instead of the phase itself, properties of the oscillator are often described using
the instantaneous relative frequency deviation: ∀ω ∈ Ω,∀t ∈ R≥0 : Y (ω, t) =

d
dt Φ(ω,t)−2πfn

2πfn
. The phase ACF can be written in terms of the ACF for this

relative frequency deviation, by generalizing eq. (3.2) on page 31 in chapter 3,
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∀(ti, tj)⊺ ∈ R2
≥0:

RΦe
(ti, tj) = E

[
Φe(ti)Φe(tj)

]
= E

[
2πfn

∫ ti

0
Y (θi)dθi2πfn

∫ tj

0
Y (θj)dθj

]

= 4π2f2
n

∫ ti

0

∫ tj

0
E
[
Y (θi)Y (θj)

]
dθjdθi

= 4π2f2
n

∫ ti

0

∫ tj

0
RY (θi, θj)dθjdθi.

(4.1)

4.2.1 Gaussian Process

The excess phase:
{

Φe(t)
}

t∈R≥0
is assumed to behave as a Gaussian process,

with zero mean function: ∀t ∈ R≥0 : µ(t) = 0. The ACF fully describes the
behavior of the excess phase process. Sampling the excess phase at n time
instances: (t0, t1, . . . , tn−1)⊺ ∈ Rn

≥0, produces an n-dimensional multivariate
normal distributed vector:

Φ⃗e =
(
Φe(t0), Φe(t1), . . . , Φe(tn−1)

)⊺ ∼ Nn

(
0⃗n, Σe

)
,

with mean vector: 0⃗n, an n× 1 all-zero vector and covariance matrix given by

Σe =


RΦe(t0, t0) RΦe(t0, t1) . . . RΦe(t0, tn−1)
RΦe(t1, t0) RΦe(t1, t1) . . . RΦe(t1, tn−1)

...
... . . . ...

RΦe
(tn−1, t0) RΦe

(tn−1, t1) . . . RΦe
(tn−1, tn−1)

 . (4.2)

4.2.2 Source of Noise

The PSD for the relative frequency deviation, denoted by SY (f), is assumed to
be composed of a sum of noise contributions of different type α [32]:

SY (f) =
2∑

α=−2
hα|f |α =

2∑
α=−2

SY α(f). (4.3)

Following the reasoning in section 3.2.1, the noise magnitudes, hα, represent
the magnitudes of the five most prevalent noise types in oscillators: random
walk FM (α = −2), flicker FM (α = −1), white FM (α = 0), flicker PM
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(α = 1), and white PM (α = 2). The terms: white and flicker refer to the
shape of the oscillator’s frequency or phase spectrum, hence the adjectives:
Frequency Modulated (FM) and Phase Modulated (PM) are used in this text.
Additionally, the contributions are assumed mutually independent. Using the
derivation outlined in appendix 4.A, the excess phase random process is shown
to consist of a sum of individual excess phase noise contributions,

{
Φα

e (t)
}

t∈R≥0
:

∀ω ∈ Ω,∀t ∈ R≥0 : Φe(ω, t) =
∑2

α=−2 Φα
e (ω, t). Each of these contributions has

a PSD following a power law: SΦα
e
(f) =

(
fn

f

)2
hα|f |α.

As the experiments in section 3.4 have shown, the noise types of interest when
studying an oscillator for a reasonable time frame are white FM (α = 0) and
flicker FM (α = −1) noise. In this chapter, these two noise types are exclusively
studied and indicated by the indices: ·w and ·f for white FM and flicker FM
components respectively. The constants: hw = h0 and hf = h−1 are used to
indicate the noise magnitudes.

4.2.3 Excess Phase ACF

White FM Noise

As assumed in section 3.2.2, the relative frequency deviation,
{

Y (t)
}

t∈R≥0
, is

a WSS process. Its ACF is therefore only dependent on the time shift and a
simplified notation is used: ∀(ti, tj)⊺ ∈ R2

≥0 : RY (ti, tj) = RY (tj − ti) = RY (τ).
Derived in section 3.2.2, under the influence of only white FM noise, the relative
frequency deviation ACF equals a scaled Dirac delta distribution function:
RY (τ) = h0δ(τ). Using eq. (4.1), the excess phase ACF becomes

∀ (ti, tj)⊺ ∈ R2
≥0 : Rϕe

(ti, tj) = 4π2f2
nhw

∫ ti

0

∫ tj

0
δ(θj − θi)dθjdθi

= 4π2f2
nhw min(ti, tj).

(4.4)

Flicker FM Noise

Generalizing the derivation made in section 3.2.3, the excess phase ACF can
be obtained. The same assumption is made here: a band-limited version of
the relative frequency deviation,

{
Y (t)

}
t∈R≥0

, to the frequency interval [fl, fh],
under the action of flicker FM noise, is WSS. From eq. (3.7) on page 33 in
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chapter 3, the relative frequency deviation ACF equals

RY (τ) = 2hf

∫ fh

fl

cos(2πfτ)
f

df.

Using eq. (4.1), the excess phase ACF can be obtained, ∀(ti, tj)⊺ ∈ R2
≥0:

RΦe(ti, tj) = 4π2f2
n

∫ ti

0

∫ tj

0
2hf

∫ fh

fl

cos
(
2πf(θj − θi)

)
f

dfdθjdθi. (4.5)

The details of working out the integral and assuming fh → ∞ are shown in
appendix 4.B. The following could be obtained, ∀(ti, tj)⊺ ∈ R2

>0:

RΦe
(ti, tj) = 4π2f2

nhf titj

(
3− 2γ− 2 ln

(
2πfl|tj − ti|

)

+ ti

tj
ln
(
|tj − ti|

ti

)
+ tj

ti
ln
(
|tj − ti|

tj

))
.

(4.6)

The ACF becomes zero whenever ti = 0 or tj = 0. When ti = tj = t, the
ln |tj − ti| terms cancel out and eq. (4.6) reduces to eq. (3.11) on page 34 in
chapter 3.

Example 4.1. Take the following realistic values: fn = 520 MHz, hw = 18.9 fs,
hf = 1 × 10−10 and fl = 1 mHz. Figure 4.1 illustrates an example white FM and
flicker FM noise Gaussian process:

{
Φw

e (t)
}

t∈R≥0
(blue) and

{
Φf

e (t)
}

t∈R≥0
(red).

The markers show four realizations: φy
e(ti) for ti ∈ {0 µs, 1 µs, 3 µs, 4 µs} and

y ∈ {w, f}. The confidence region (one standard deviation above and below the
mean containing 68 % of the samples) and mean through time:

√
Var

[
Φy

e(t)
]

and E
[
Φy

e(t)
]
, given these four realizations, are represented by a shaded area

and a solid line, respectively.
Note. The standard deviation through time for flicker FM and white FM noise
increases linearly and with a square root law, respectively.

4.3 ERO-ES Entropy Model

To study the effects of flicker FM noise on the entropy generated by an ES,
the ERO-ES is selected as the reference architecture in this chapter. As shown
in fig. 4.2, the ERO-ES being studied consists of a single free-running RO, a
reference clocking signal and a sampling FF.
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Figure 4.1: Gaussian process for white FM (blue) and flicker FM (red) noise
in example 4.1. The markers represent realized values for the excess phase
process. The shaded area and the solid line represent the standard deviation
and mean for the process at any time instant respectively, given the realizations:
Φy

e(ti) = φy
e(ti) for ti ∈ {0 µs, 1 µs, 3 µs, 4 µs} and y ∈ {w, f}.

ENABLE D Q

REFERENCE_CLOCK

RANDOM _BIT

Figure 4.2: ERO-ES reference architecture.

Note. Although the derivations in this chapter assume the reference clock is
jitter-free, in reality, the reference clock may also exhibit jitter.

Techniques exist to transfer the jitter from the reference clock to the free-running
oscillator under study [21], allowing the results presented here to remain valid.
However, when the origin of the jitter in the reference clock is unknown, it
should not be considered in the entropy estimate.

From section 4.2, both the white and flicker excess phase components can be
considered a Gaussian process. A random excess phase vector is defined as

Φ⃗e =
(
Φw

e (t1), Φw
e (t2), . . . , Φw

e (tn), Φf
e (t1), Φf

e (t2), . . . , Φf
e (tn)

)⊺
,

describing the sampled excess phase at time instances (t1, t2, . . . , tn)⊺ ∈ Rn
≥0.

The excess phase vector is then multivariate normal distributed, as the white and
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flicker noise components are independent: Φ⃗e ∼ N2n

(
0⃗2n, Σe

)
. The covariance

matrix is constructed as

Σe =
[

Σw
e 0n×n

0n×n Σf
e

]
, (4.7)

with 0n×n, an n × n all zero matrix. The n × n matrices Σw
e and Σf

e are
the covariance matrices for the individual white and flicker noise components
respectively, constructed using the noise ACF, as illustrated in eq. (4.2).

4.3.1 Bit Distribution

In an ERO-ES, the oscillator is sampled at regular time intervals: ti = itacc for
i ∈ {1, 2, . . . , n} and accumulation time, tacc. The sampled value of the i-th bit,
Bi, equals

Bi =
⌊Φ(ti)
π

⌋
mod 2 =

⌊2πfnti + ϕ0 + Φe(ti)
π

⌋
mod 2

= bd
i ⊕

⌊ϕi + Φe(ti)
π

⌋
mod 2,

(4.8)

with bd
i =

⌊ 2πfnti+ϕ0
π

⌋
mod 2 and ϕi = (2πfnti + ϕ0) mod π, the number of

completed half cycles modulo two and fractional part of the current oscillator
half cycle, both deterministic quantities and ⊕, the binary XOR operator.
XORing with bd

i can be considered a form of post-processing, as it does not
alter the entropy content of the bit Bi. Remove the XOR post-processing to
obtain an adjusted bit with identical entropy content:

B′
i =

⌊ϕi + Φe(ti)
π

⌋
mod 2 =

⌊ϕi + Φw
e (ti) + Φf

e (ti)
π

⌋
mod 2.

B′
i is a discrete binary random variable, dependent on the oscillator excess

phase, Φe(ti), at sampling time ti. The conditional Probability Mass Function
(PMF), given the excess phase equals

fB′
i
|Φe(ti)(b | φ) =

{
1 if b =

⌊
ϕi+φ
π

⌋
mod 2

0 otherwise
.

When considering m sample time instances: ∀j ∈ Nm,∀ij ∈ {1, 2, . . . , n} :
(ti0 , ti1 , . . . , tim−1)⊺ ∈ Rm

≥0, define the random bit vector as follows: B⃗ =
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(B′
i0

, B′
i1

, . . . , B′
im−1

)⊺, with conditional PMF equal to

fB⃗|Φ⃗e
(⃗b | φ⃗) =

m−1∏
j=0

fB′
ij

|Φe(tij
)(bij | φij−1 + φij−1+n), (4.9)

where bij
, φij−1, and φij−1+n are the elements at the j-th, (ij − 1)-th, and

(ij − 1 + n)-th position in the vectors b⃗, and φ⃗, respectively. This PMF only
equals one if for all m indexes, ij , the bit bij equals

⌊ϕij
+φij −1+φij −1+n

π

⌋
mod 2,

with φij−1 and φij−1+n, the given excess white and flicker phase respectively
for the index corresponding with sampling time tij

.

4.3.2 Conditional Distributions

The model presented in this chapter assumes that an entity has observed
or will observe a certain amount of information about the ERO-ES. This
information could include the exact oscillator phase value, Φw

e (ti) and Φf
e (ti), or

the produced output bit B′
i at specific sampling time instances: ti ∈ R≥0. Take

as an example: person A collecting future or previous ES output. The collection
of already observed random variables is referred to as the observed part. The
conditional distributions developed in this study, describe the distribution for
an unobserved part (phase or bit values), from the perspective of that entity
who already possesses knowledge of the observed part. For instance: the current
bits’ distribution for person A, given this person has the knowledge of different
bits produced in the future or past.

The n sampling time instances of interest are now partitioned in an observed part:
{tio

0
, tio

1
, . . . , iio

no−1
} and an unobserved part: {tiu

0
, tiu

1
, . . . , tiu

nu−1
}, containing

no and nu time instances, respectively and n = no + nu, the total number
of samples under study. A sample instance cannot be both observed and
unobserved: ∀(k, j) ∈ Nnu × Nno : iu

k ̸= io
j .

The excess phase vector can be similarly partitioned (by reordering the indexes)
into observed and unobserved parts:

Φ⃗e =
(

⃗Φo,w
e

⊺
, ⃗Φu,w

e

⊺
,

⃗Φo,f
e

⊺

,
⃗Φu,f
e

⊺)⊺
,

with: ∀(x, y) ∈ {o, u} × {w, f} : ⃗Φx,y
e =

(
Φy

e(tix
0
), Φy

e(tix
1
), . . . , Φy

e(tix
nx−1

)
)⊺.

Similarly, the random bit vectors representing the observed and unobserved ES
output equal ∀x ∈ {o, u} : B⃗x = (B′

ix
0
, B′

ix
1
, . . . , B′

ix
nx−1

)⊺.
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Conditioned on the Oscillator Phase

The unobserved excess phase vector, Φ⃗u
e =

( ⃗Φu,w
e

⊺
,

⃗Φu,f
e

⊺)⊺, given a realization
of the observed excess phase, Φ⃗o

e =
( ⃗Φo,w

e

⊺
,

⃗Φo,f
e

⊺)⊺ =
(
φ⃗w⊺

, φ⃗f
⊺)⊺ = φ⃗o, has

a multivariate normal conditional Probability Density Function (PDF):

fΦ⃗u
e |Φ⃗o

e

(
φ⃗u | φ⃗o

)
= ϕN2nu

(
φ⃗u; ⃗

µ
u|o
e , Σu|o

e

)
, (4.10)

with conditional covariance matrix equal to

Σu|o
e =

[
Σuu,w

e −Σuo,w
e Σoo,w

e
−1Σou,w

e 0nu×nu

0nu×nu Σuu,f
e −Σuo,f

e Σoo,f
e

−1Σou,f
e

]
,

(4.11)
and conditional mean vector equal to

⃗
µ

u|o
e =

[
Σuo,w

e Σoo,w
e

−1φ⃗w

Σuo,f
e Σoo,f

e
−1

φ⃗f

]
.

The submatrices are derived from the excess phase covariance matrix in eq. (4.7):

Σe =


Σoo,w

e Σou,w
e

Σuo,w
e Σuu,w

e
0n×n

0n×n
Σoo,f

e Σou,f
e

Σuo,f
e Σuu,f

e

 ,

Note. Only the conditional mean is dependent on the phase realization.

Conditioned on the Output Bits

Using Bayes’ rule, the conditional PDF for the random excess phase vector, Φ⃗e,
given the observation of no bits B⃗o = b⃗, equals

fΦ⃗e|B⃗o(φ⃗ | b⃗) =
fB⃗o|Φ⃗e

(⃗b | φ⃗)fΦ⃗e
(φ⃗)

fB⃗o (⃗b)
, (4.12)

with the unconditional excess phase PDF equal to the 2n-dimensional
multivariate normal distribution PDF, fΦ⃗e

(φ⃗) = ϕN2n
(φ⃗; 0⃗2n, Σe). The

unconditional marginal PMF, for a bit vector, fB⃗ (⃗b) or equivalently fB⃗o (⃗b), can
be found by integrating the unconditional excess phase PDF over the subspace
where fB⃗|Φ⃗e

(⃗b | φ⃗), from eq. (4.9), equals one:

fB⃗ (⃗b) =
∫
R2n

fB⃗|Φ⃗e
(⃗b | φ⃗)fΦ⃗e

(φ⃗)dφ⃗. (4.13)
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Figure 4.3: Oscillator total phase PDF and integration area for the first sample
being equal to one.

Example 4.2. Take the following realistic parameter values: fn = 520 MHz,
tacc = 4.11 µs, ϕ0 = 0 rad (initial oscillator phase), hw = 18.9 fs (white noise
strength, as measured in chapter 3), and hf = 100 × 10−12 (flicker noise strength,
with a noise corner around 5 µs). In this example, two sampling time instances
are considered: t1 = tacc and t2 = 2tacc. The random excess phase vector
becomes Φ⃗e =

(
Φw

e (t1), Φw
e (t2), Φf

e (t1), Φf
e (t2)

)⊺. The generated bit from the
first sample is observed equal to one, bio

0
= 1 for io

0 = 1 and B⃗o = [B′
io

0
]. The

probability of sampling a one at the first sampling time instance, is obtained
by integrating the unconditional total oscillator phase PDF over the area
highlighted in fig. 4.3 and equals

fB⃗o

(
[1]
)

=
∫⌊

ϕ1+φ0+φ2
π

⌋
mod 2=1

ϕN4(φ⃗; 0⃗4, Σe)dφ⃗ = 21.3 %,

with the unconditional excess phase covariance matrix equal to

Σe =


Rw

Φe
(t1, t1) Rw

Φe
(t1, t2) 0 0

Rw
Φe

(t2, t1) Rw
Φe

(t2, t2) 0 0
0 0 Rf

Φe
(t1, t1) Rf

Φe
(t1, t2)

0 0 Rf
Φe

(t2, t1) Rf
Φe

(t2, t2)

 .

Equation (4.12) determines that the knowledge of the first bit being equal to
one, changes the distributions for the white- and flicker excess phase at the
second sample, as illustrated by figs. 4.4 and 4.5.
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Figure 4.4: Joint PDFs for the white and flicker excess phase at the first
sampling time instance: t1 (left) and second sampling time instance: t2 (right),
conditioned on the first sampled bit being equal to one.

Figure 4.5: Difference between the unconditioned joint PDF and the conditioned
joint PDF: fΦw

e (ti),Φf
e (ti)|B′

1
(φw, φf | 1)− fΦw

e (ti),Φf
e (ti)(φw, φf ), for ti equal to

t1 (left) or t2 (right).
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4.3.3 Monte Carlo Integration

Example 4.2 was generated by evaluating the four-dimensional multivariate
normal PDF, ϕN4 , at a four-dimensional grid. While providing accurate results,
this approach quickly becomes intractable when dealing with more dimensions
(i.e. the number of samples at interest increases). When evaluating eq. (4.12),
only the denominator poses a problem. The unconditional bit PMF, fB⃗ (⃗b),
requires the integration of a multivariate normal PDF in a 2n-dimensional
subspace, as shown by eq. (4.13). No closed form solution exists when there
is correlation between the individual random variables or the integration
boundaries depend on more than one random variable.

The knowledge of the generated bit at time tij
: B′

ij
= bij

, leads to an additional
factor in eq. (4.9). The excess phase becomes additionally constrained by the
relation:

⌊ϕij
+Φe(tij

)
π

⌋
mod 2 = bij

, which generates a periodic tilted bands
integration region, with period 2π, in the Φw

e (tij ), Φf
e (tij )-plane, as could be

seen in fig. 4.4 (left).

For evaluating the integral in eq. (4.13), a Monte Carlo integration method
is used. Generate s random samples, φ⃗i for i ∈ Ns, from the excess phase
distribution, Φ⃗e (multivariate normal). The ratio between the number of
samples that fall inside the integration region to the total number of generated
samples is used as an approximation to the integral in eq. (4.13):

fB⃗ (⃗b) ≈ 1
s

∣∣∣{φ⃗i

∣∣ fB⃗|Φ⃗e
(⃗b | φ⃗i) = 1, i ∈ Ns

}∣∣∣. (4.14)

For all the results presented in this chapter, the multivariate_normal()
method from the numpy.random Python library was used to generate one
million (s) samples.

4.3.4 Entropy Study

Using eq. (4.13) or eq. (4.14) as an approximation, to obtain the unconditional
PMF for the bit vector B⃗u, the unconditional Shannon entropy for the
unobserved bits can be determined as usual:

H[B⃗u] = −
∑

b⃗∈{0,1}nu

fB⃗u (⃗b) log2
(
fB⃗u (⃗b)

)
. (4.15)
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Entropy Conditioned on the Oscillator Phase

Given the realization of no phase values, at sampling time instances
(tio

0
, tio

1
, . . . , tio

no−1
)⊺ ∈ Rno

≥0: Φ⃗o
e = φ⃗ and combining eqs. (4.9) and (4.10), the

unobserved bits PMF, given the observed oscillator phase at no time instances
equals

fB⃗u|Φ⃗o
e
(⃗b | φ⃗o) =

∫
R2nu

fB⃗u|Φ⃗u
e

(⃗b | φ⃗u)fΦ⃗u
e |Φ⃗o

e
(φ⃗u | φ⃗o)dφ⃗u.

From this conditional PMF, the conditional Shannon entropy, given the observed
phase values, H[B⃗u | Φ⃗o

e = φ⃗o], can be determined similarly to eq. (4.15).

Entropy Conditioned on the Output Bits

Given again no bit observations b⃗o = (bo
0, bo

1, . . . , bo
no−1)⊺ ∈ {0, 1}no , at sampling

time instances (tio
0
, tio

1
, . . . , tio

no−1
)⊺ ∈ Rno

≥0, we therefore have a realization:
B⃗o = b⃗o. Combining eqs. (4.9) and (4.12), the conditional unobserved bits
PMF, given the realization of B⃗o can be determined as follows:

fB⃗u|B⃗o(b⃗u | b⃗o) =
∫
R2n

fB⃗u|Φ⃗e
(b⃗u | φ⃗)fΦ⃗e|B⃗o(φ⃗ | b⃗o)dφ⃗.

Using the Monte Carlo integration method from section 4.3.3, this conditional
PMF can be estimated by the following ratio:

fB⃗u|B⃗o(b⃗u | b⃗o) =
fB⃗u,B⃗o(b⃗u, b⃗o)

fB⃗o(b⃗o)
,

with

fB⃗u,B⃗o(b⃗u, b⃗o) ≈ 1
s

∣∣∣{φ⃗i

∣∣ fB⃗u|Φ⃗e
(b⃗u | φ⃗i) = 1, fB⃗o|Φ⃗e

(b⃗o | φ⃗i) = 1, i ∈ Ns

}∣∣∣,
and with fB⃗o(b⃗o) from eq. (4.14). Use s randomly generated samples from the
unconditional multivariate normal Φ⃗e distribution, φ⃗i for i ∈ Ns. From the
conditional PMF, fB⃗u|B⃗o , the conditional Shannon entropy for the unobserved
bits, given the observed bits, H[B⃗u | B⃗o = b⃗o], can be determined similar to
eq. (4.15).
Example 4.3. Given the scenario from example 4.2, the total oscillator phase
PDF is shown in fig. 4.6. Both the unconditional PDF as the conditional PDF,
given the first sample equaled one, are shown. The conditional probability of
obtaining a one at the second sample equals 52.8 % and the conditional Shannon
entropy is H[B′

2 | B′
1 = 1] = 0.998 bit.
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Figure 4.6: Oscillator total phase PDF and integration area for the second
sample being equal to one, conditioned on the first sample being equal to one
(solid blue) and unconditioned (dashed red).

Worst-case Entropy

Despite the bimodal shape of the conditioned total oscillator phase PDF from
fig. 4.6 at example 4.3, the obtained Shannon entropy for the second sample,
given the first sample equals one is significantly larger than the entropy for the
first sample, H[B′

1] = 0.747 bit vs. H[B′
2 | B′

1 = 1] = 0.998 bit. The area under
the PDF curve used for determining the bit probability is highly influenced by
the horizontal position of the curve. This horizontal position is determined by
the nominal phase at the sampling time: 2πfnitacc + ϕ0 mod 2π for the i-th
sample, related to ϕi in eq. (4.8). To eliminate the influence of the nominal
phase on the entropy, a worst-case entropy function is defined.

Definition 4.1. (Worst-case entropy) Given an oscillator total phase random
variable at some time instance Φ : Ω → R and its corresponding random bit,
B =

⌊Φ
π

⌋
mod 2. A worst-case random bit function, Bworst(δϕ) : Ω× [0, 2π)→

{0, 1}, is defined as

Bworst(δϕ) =
⌊Φ + δϕ

π

⌋
mod 2,

with δϕ, a deterministic phase offset. The worst-case Shannon entropy for B,
conditioned on an event, E ∈ F , is equal to

Hworst[B | E] = H
[
Bworst(δm

ϕ ) | E
]
,

with: δm
ϕ = arg maxδϕ∈[0,2π) P

[
Bworst(δϕ) = 1

]
.
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Figure 4.7: Oscillator total phase PDF and worst-case entropy integration area
for the second sample being equal to one, given the first sample was one.

As the worst-case entropy is independent of a phase shift, one can assign a
worst-case entropy value to a phase random variable. Both the total oscillator
phase as only the excess oscillator phase have an equal worst-case entropy
content, as they only differ in a deterministic phase offset (nominal phase).

Definition 4.2. (Worst-case entropy for a phase random variable) Given an
oscillator’s total phase and excess phase random variables at some time instance
Φ : Ω → R and Φe : Ω → R. The worst-case Shannon entropy for Φ and Φe,
conditioned on an event, E ∈ F , is equal to

Hworst[Φ | E] = Hworst[Φe | E] = Hworst[B | E],

with B : Ω → {0, 1}, a random bit extracted from that oscillator, B =⌊Φ+δϕ

π

⌋
mod 2, for any phase shift δϕ ∈ R.

Example 4.4. Given the scenario from example 4.2, fig. 4.7 provides the
conditional PDF for the total oscillator phase at the second sampling moment,
given the first sample obtained a one. The shaded area indicates the worst-case
probability of obtaining a one, equaling 76.6 %. The worst-case Shannon entropy
now becomes Hworst[B′

2 | B′
1 = 1] = 0.785 bit, which is significantly reduced

compared to the regular Shannon entropy in example 4.3, and independent of
the nominal oscillator phase.
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Table 4.1: Numerical values used for: hw, hf and tacc and obtained white FM
noise Hworst.

Estimate hw hf Corner
Sampling speed

25 % 100 % 400 %
tacc Hworst tacc Hworst tacc Hworst

[fs] [1 × 10−12] [µs] [µs] [bit] [µs] [bit] [µs] [bit]
Low - 6.22 100 25.0 0.992 100 > 0.999 400 > 0.999
Mid 18.9 104 5.00 1.25 0.0186 5.00 0.523 20.0 0.979
High - 9480 0.0434 0.0109 < 0.001 0.0434 < 0.001 0.174 < 0.001

4.4 Model Simulation

The Gaussian process model, developed in section 4.3, will now be used to
generate entropy estimates for an ERO-ES affected by both white FM and
flicker FM noise under realistic operating conditions.

4.4.1 Noise Magnitude

This section explains how the scaling constants hw and hf , used to approximate
both the white FM and flicker FM noise magnitude, are selected. Based on
the obtained noise corner, the ERO-ES sampling speed is determined as well.
Table 4.1 lists the numerical values used in the remainder of this chapter.

White FM Noise Magnitude

Throughout this chapter, a single magnitude for the white FM noise is used:
hw = 18.9 fs. As provided by table 3.9 on page 58 in chapter 3, this value is
lower than most other estimates in the field and can therefore be considered as
a conservative estimate.

There exists a one-to-one relation between the white FM noise component
worst-case Shannon entropy and the accumulation time. Figure 4.8 depicts
this relation for the selected white FM noise magnitude (solid red) and other
magnitudes (dashed gray). Higher noise magnitudes give a higher entropy value
at a given accumulation time.
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Figure 4.8: Worst-case Shannon entropy for a white FM noise source, versus
accumulation time. Entropy curves for noise magnitudes hw = 18.9 fs (solid red)
and other magnitudes (dashed gray) for reference: {5 fs, 10 fs, 40 fs, 80 fs, 160 fs}
are shown.

Flicker FM Noise Magnitude

This chapter considers three different magnitudes for the flicker FM noise
component. At the higher end of the spectrum, there is the magnitude as
measured in section 3.4, hf = 9.48 × 10−9. At the lower end, the noise corner
derived from the measurements in [27] lead to a magnitude hf = 6.22 × 10−12,
when using the white noise strength estimate from section 4.4.1. The third
value is selected in between, hf = 1.04 × 10−10, and approaches what has been
reported by [46] and [21]. A frequency value fl = 1 mHz is used for the lower
frequency bound in eq. (4.6).

White FM - Flicker FM Noise Corner

The presence of both white FM and flicker FM noise gives rise to a noise
corner. The noise corner represents a pair

(
tcor, Var

[
Φ(tcor)

])
, for which the

accumulated oscillator white FM phase variance equals the accumulated flicker
FM phase variance. From eqs. (4.4) and (4.6), the corner accumulation time
satisfies the relation: tcor

(
3− 2γ− 2 ln(2πfltcor)

)
= hw

hf
.

Figure 4.9 depicts the accumulated oscillator phase variance versus accumulation
time, for the three flicker FM noise magnitudes considered in this chapter. For
accumulation times below the noise corner, the white FM noise component is
dominant and the oscillator phase variance increases linearly. Above the noise



MODEL SIMULATION 77

Figure 4.9: Oscillator phase variance versus accumulation time for the three dif-
ferent flicker FM noise magnitudes: {6.22 × 10−12, 1.04 × 10−10, 9.48 × 10−9},
represented by distinct colors, used in this work.

corner, the flicker FM noise component dominates and the variance increases in
a quadratic way. The dotted and dashed lines in fig. 4.9 represent the theoretical
phase variance from eqs. (4.4) and (4.6) respectively. The simulation results,
when using the Gaussian process model are shown as solid opaque curves. The
noise corner accumulation time values obtained for the flicker FM magnitudes
are provided in table 4.1.

Sampling Speed

Depending on the flicker FM magnitude, the accumulation time is selected as
25 %, 100 % and 400 % of the value of the noise corner. At 25 %, the white FM
noise component will dominate and at 400 %, the flicker FM noise component
dominates. Table 4.1 provides the accumulation times at interest and the
corresponding worst-case Shannon entropy for the white FM component, also
visible in fig. 4.8, when the ERO-ES is sampled at tacc time intervals.

4.4.2 Entropy Estimation

This section presents numerical results for the conditional ERO-ES worst-case
entropy, from implementing the theory outlined in sections 4.3.2 and 4.3.4. The
subsections are arranged in decreasing knowledge of the oscillator’s state: in
the first subsection, we assume the observation of the complete oscillator phase,
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whereas in the second subsection only the produced ES output bits are assumed
to be known.

Knowledge of the Previous Phase Values

The worst-case Shannon entropy is evaluated when p previous sample phase
values are known, Hworst[Φ⃗u

e | Φ⃗
o,p
e = φ⃗]. The entropy for the sixth bit from

an ERO-ES is calculated, given the knowledge of the previous p sample phases,
for p ranging from zero up to five. The unobserved/observed excess phase
vectors become

Φ⃗u
e =

(
Φw

e (t6), Φf
e (t6)

)⊺
,

Φ⃗o,p
e =

(
Φw

e (t5), Φw
e (t4), . . . , Φw

e (t6−p), Φf
e (t5), Φf

e (t4), . . . , Φf
e (t6−p)

)⊺
,

for p ∈ N6. When p equals zero, no phase information is known and the entropy
becomes unconditioned.
Note. From eq. (4.11), the conditional covariance matrix for Φ⃗u

e | Φ⃗o,p
e = φ⃗

is independent of the actual realized value of the previous sample phases, φ⃗,
and note that the worst-case entropy is independent of a phase shift introduced
by the conditional mean. The worst-case entropy, given the knowledge of p
previously observed sample phases is therefore not influenced by the realized
value itself: Hworst[Φ⃗u

e | Φ⃗
o,p
e = φ⃗] = Hworst[Φ⃗u

e | Φ⃗
o,p
e ].

Knowledge of p Previous Sample Phases Figures 4.10 to 4.12 provide the
worst-case Shannon entropy and phase standard deviation for the sixth bit,
given knowledge of p previous phase values, for flicker FM noise magnitudes
6.22 × 10−12, 1.04 × 10−10 and 9.48 × 10−9, respectively. The entropy and
phase standard deviation values are given for white FM and flicker FM noise
separately, Hworst

[
Φy

e(t6) | Φ⃗o,p
e

]
and

√
Var

[
Φy

e(t6) | Φ⃗o,p
e

]
, for y ∈ {w, f},

respectively.

As seen from these figures, the entropy reduces significantly when the previous
sample phase is known, both for white FM and flicker FM noise. For white FM
noise, the entropy remains constant for p ≥ 1 and the phase variance equals the
variance accumulated between the fifth and sixth sample: Var[Φw

e (t6) | Φ⃗o,p
e ] =

4π2f2
nhwtacc. For flicker FM noise, the phase variance and therefore also the

worst-case entropy keep reducing for increasing p, although the reduction is
minor compared to the reduction for p from zero to one and reduces for higher
p.
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Figure 4.10: Worst-case Shannon entropy (top) and oscillator phase standard
deviation (bottom), given the knowledge of p previous sample phase values,
for p ∈ N6 and a flicker FM noise magnitude hf = 6.22 × 10−12. Results are
provided both for white FM and flicker FM noise and for accumulation lengths:
tacc ∈ {25.0 µs, 100 µs, 400 µs}.

Figure 4.11: Worst-case Shannon entropy (top) and oscillator phase standard
deviation (bottom), given the knowledge of p previous sample phase values,
for p ∈ N6 and a flicker FM noise magnitude hf = 1.04 × 10−10. Results are
provided both for white FM and flicker FM noise and for accumulation lengths:
tacc ∈ {1.25 µs, 5.00 µs, 20.0 µs}.
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Figure 4.12: Worst-case Shannon entropy (top) and oscillator phase standard
deviation (bottom), given the knowledge of p previous sample phase values,
for p ∈ N6 and a flicker FM noise magnitude hf = 9.48 × 10−9. Results are
provided both for white FM and flicker FM noise and for accumulation lengths:
tacc ∈ {10.9 ns, 43.4 ns, 174 ns}.

Knowledge of Only the Previous Sample Phase Elaborating on knowing only
the phase of the previous sample (p = 1), fig. 4.13 depicts the worst-case Shannon
entropy for white FM and flicker FM noise separately, versus the accumulation
time between the samples. Curves are given for three time instances: t6, t1000
and t1000000, the sixth (given in previous paragraph), thousandth and millionth
bit, respectively. The worst-case white FM noise Shannon entropy shown in
fig. 4.13 is identical to the solid red curve from fig. 4.8.

As seen from this figure, given the knowledge of the previous sample’s phase,
the worst-case entropy for the flicker FM noise component is significantly higher,
comparable or significantly lower than the worst-case entropy for the white FM
noise component, when using the high, mid or low flicker FM noise magnitude
estimate respectively from table 4.1. Additionally, increasing from the sixth
to the millionth sampled bit, reduces the knowledge gained over the current
sample, when observing the previous sample’s phase value.

Knowledge of the Previous Bit Values

In this section, only the value for the previous p sampled bits instead of the
full oscillator phase is assumed to be known. The entropy for the 300-th bit
from an ERO-ES is calculated, given the knowledge of the previous p sampled
bits, for p ranging from zero up to ten. When p equals zero, the entropy for the
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Figure 4.13: Worst-case flicker FM noise Shannon entropy, given the knowledge
of the previous sample’s phase value versus the accumulation time (tacc) between
two samples. Curves are plotted for three different flicker FM noise magnitudes:
hf ∈ {6.22 × 10−12, 1.04 × 10−10, 9.48 × 10−9}, a higher noise magnitude gives
a higher entropy value. For each flicker FM noise magnitude, three curves
corresponding to the sixth, thousandth and millionth bit are shown. The white
FM noise entropy, from fig. 4.8, is shown for reference.

unconditioned distribution is given. The unobserved excess phase and observed
bit vector become

Φ⃗u
e =

(
Φw

e (t300), Φf
e (t300)

)⊺
,

B⃗o,p = (B299, B298, . . . , B300−p)⊺.

Figures 4.14 to 4.16 show the worst-case Shannon entropy for the 300-th bit,
given the knowledge of p previous sample bits, for flicker FM noise magnitudes
6.22 × 10−12, 1.04 × 10−10 and 9.48 × 10−9, respectively. The entropy values
are given for white FM and flicker FM noise separately, Hworst

[
Φy

e(t300) | B⃗o,p
]
,

for y ∈ {w, f}, respectively.

Figures 4.14 and 4.15 show high worst-case Shannon entropy values for both
white FM and flicker FM noise. The entropy reduces slightly with increasing
number of known bits, as each bit reveals some amount of information on the
current oscillator phase. For the higher sampling speeds in fig. 4.16, the flicker
FM worst-case Shannon entropy drastically reduces even when a single bit is
known.
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Figure 4.14: Worst-case Shannon entropy, given the knowledge of p previous
sample bit values, for p ∈ N11 and a flicker FM noise magnitude: hf =
6.22 × 10−12. Results are provided both for white FM and flicker FM noise and
for accumulation lengths: tacc ∈ {25.0 µs, 100 µs, 400 µs}.

Figure 4.15: Worst-case Shannon entropy, given the knowledge of p previous
sample bit values, for p ∈ N11 and a flicker FM noise magnitude: hf =
1.04 × 10−10. Results are provided both for white FM and flicker FM noise and
for accumulation lengths: tacc ∈ {1.25 µs, 5.00 µs, 20.0 µs}.
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Figure 4.16: Worst-case Shannon entropy, given the knowledge of p previous
sample bit values, for p ∈ N11 and a flicker FM noise magnitude: hf =
9.48 × 10−9. Results are provided both for white FM and flicker FM noise and
for accumulation lengths: tacc ∈ {10.9 ns, 43.4 ns, 174 ns}.

4.4.3 Summary of Simulation Findings

The simulation results reveal several key insights regarding the worst-case
entropy generated by white FM and flicker FM noise in an ERO-ES. Firstly, the
worst-case entropy decreases more significantly when previous phase values are
known for flicker FM noise compared to white FM noise. This could mainly be
attributed to the dependencies in consecutive period lengths caused by flicker
FM noise. Additionally, at higher sampling speeds, flicker FM noise may appear
to contain more entropy than it actually does. This overestimation of entropy is
only detected when previous samples are also considered. Lastly, the hf value
plays a crucial role in determining the ratio of entropy contribution between
white and flicker noise, making it impossible to assert that flicker noise always
provides a meaningful contribution to the output entropy.

4.5 Conclusion and Further Research Directions

This chapter presented a method for modeling the excess phase process of
a free-running oscillator. The time-domain model is based on the theory of
Gaussian processes and is specifically tailored for use of estimating the entropy
produced by an ES. The focus of this chapter was on the most prevalent noise
types: white FM and flicker FM noise, but the proposed model could be applied
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to noise sources with other spectral shapes (e.g. random walk FM noise as
described by [32]) as well. For the two noise types, the ACF was analytically
derived from the shape of the oscillator’s relative frequency deviation spectrum.

Using Bayes’ theorem, the conditional ERO-ES output bit distribution is
analytically derived from the Gaussian process excess phase model. These
distributions allow observing the change in phase PDF shape, when further
knowledge on the ES state becomes available. Additionally, the entropy produced
by the ES is derived from the obtained phase PDFs and the worst-case entropy
concept was introduced to remove the deterministic influence of the phase offset
on the derived entropy figure.

Finally, this chapter presents some exploratory simulation results for the
proposed entropy model, using three different magnitudes for the flicker FM
noise component, encountered in the literature. The results show that flicker
FM noise can indeed in some cases be a valid source of TRNG entropy. However,
due to the inherent long-lasting dependency, this noise should be harvested with
great care. Given a low flicker FM noise magnitude, we conclude from fig. 4.13
that the flicker FM noise only bears minimal entropy compared to white FM
noise at practical sampling speeds. Especially as there is a wide range of flicker
FM noise estimates available in literature, ranging from hf = 9.48 × 10−9 in [67],
chapter 3 in this thesis, down to hf = 6.22 × 10−12 in [27], more experimental
evidence on potentially a wider range of platforms should become available
before flicker FM noise could be widely accepted as a reliable source of TRNG
entropy.

Besides from working on a more profound experimental validation of the flicker
FM noise magnitude, we believe further research should be focused on applying
the Gaussian process model on a more extended set of ES architectures, e.g.
situations where multiple oscillators are used. Additionally, studying the
stopping time, when a specified phase level is reached by the random process, is
necessary to determine the distribution for the oscillator’s period length, which
in turn enables to augment existing ES stochastic models with the existence of
flicker FM noise.

Appendix 4.A Combining Multiple Noise Sources

In terms of the relative phase acceleration, ∀ω ∈ Ω, t ∈ R≥0 : A(ω, t) =
d
dt Y (ω, t), the relation from eq. (4.3) becomes SA(f) = (2πf)2SY (f) =∑2

α=−2(2πf)2SY α(f) =
∑2

α=−2 SAα(f). The relative phase acceleration is
assumed stationary in section 3.2.4, therefore SA(f) = F

{
RA(τ)

}
. Combine this
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by using the linearity of the Fourier Transform (FT): SA(f) =
∑2

α=−2 SAα(f) =∑2
α=−2 F

{
RAα(τ)

}
= F

{∑2
α=−2 RAα(τ)

}
= F

{
RA(τ)

}
, therefore, we have

RA(τ) =
∑2

α=−2 RAα(τ), with RAα(τ) = F−1{(2πf)2SY α(f)
}

. The relative
phase acceleration ACF is similarly composed of a sum of independent
contributions.

Satisfying this relation, we assume the relative phase acceleration equals ∀ω ∈
Ω, t ∈ R≥0 : A(ω, t) =

∑2
α=−2 Aα(ω, t), with ∀(ti, tj)⊺ ∈ R2

≥0 : RAα(ti, tj) =
E
[
Aα(ti)Aα(tj)

]
. Indeed, the ACF now equals

RA(ti, tj) = E
[
A(ti)A(tj)

]
= E

[ 2∑
αi=−2

Aαi(ti)
2∑

αj=−2
Aαj (tj)

]

=
2∑

αi=−2

2∑
αj=−2

E
[
Aαi(ti)Aαj (tj)

]
=

2∑
α=−2

E
[
Aα(ti)Aα(tj)

]

=
2∑

α=−2
RAα(ti, tj),

using ∀(ti, tj)⊺ ∈ R2
≥0, αi ̸= αj : E

[
Aαi(ti)Aαj (tj)

]
= 0, due to the mutual

independence of the noise contributions.

We now define the individual excess phase noise contributions: Φα
e : Ω×R≥0 →

R by Φα
e (ω, t) = 2πfn

∫ t

0
∫ θ

0 Aα(ω, ν)dνdθ, or equivalently by d2

dt2 Φα
e (ω, t) =

2πfnAα(ω, t). The total excess phase then becomes

Φe(ω, t) = 2πfn

∫ t

0

∫ θ

0
A(ω, ν)dνdθ = 2πfn

∫ t

0

∫ θ

0

2∑
α=−2

Aα(ω, ν)dνdθ

=
2∑

α=−2
2πfn

∫ t

0

∫ θ

0
Aα(ω, ν)dνdθ =

2∑
α=−2

Φα
e (ω, t),

with the excess phase noise contribution PSD equal to

SΦα
e
(f) = (2πfn)2

(2πf)4 SAα(f) =
(fn

f

)2
SY α(f) =

(fn

f

)2
hα|f |α.

The total oscillator phase therefore equals a sum of independent noise
contributions, added to a deterministic part, determined by the nominal
frequency, fn: Φ(ω, t) = 2πfnt + ϕ0 +

∑2
α=−2 Φα

e (ω, t).
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Appendix 4.B Flicker FM Noise ACF

Changing the order of integration in eq. (4.5) and working out the integral
obtains ∀(ti, tj)⊺ ∈ R2

≥0:

RΦe
(ti, tj) = 8π2f2

nhf

∫ fh

fl

1
f

∫ ti

0

∫ tj

0
cos
(
2πf(θj − θi)

)
dθjdθidf

= 4πf2
nhf

∫ fh

fl

1
f2

∫ ti

0

(
sin
(
2πf(tj − θi)

)
+ sin(2πfθi)

)
dθidf

= 2f2
nhf

∫ fh

fl

1
f3

(
cos
(
2πf(tj − ti)

)
− cos(2πftj)

− cos(2πfti) + 1
)

df.

When ti ̸= tj , ti ̸= 0 and tj ̸= 0, the integral becomes

RΦe(ti, tj) = 2f2
nhf

(
−

cos
(
2πfh(tj − ti)

)
2f2

h

+ π(tj − ti)
sin
(
2πfh(tj − ti)

)
fh

− 2π2(tj − ti)2 Ci
(
2πfh|tj − ti|

)
− 1

2f2
h

+
cos
(
2πfl(tj − ti)

)
2f2

l

− π(tj − ti)
sin
(
2πfl(tj − ti)

)
fl

+ 2π2(tj − ti)2 Ci
(
2πfl|tj − ti|

)
+ 1

2f2
l

+ cos(2πfhtj)
2f2

h

− πtj
sin(2πfhtj)

fh
+ 2π2t2

j Ci(2πfhtj)

− cos(2πfltj)
2f2

l

+ πtj
sin(2πfltj)

fl
− 2π2t2

j Ci(2πfltj)

+ cos(2πfhti)
2f2

h

− πti
sin(2πfhti)

fh
+ 2π2t2

i Ci(2πfhti)

− cos(2πflti)
2f2

l

+ πti
sin(2πflti)

fl
− 2π2t2

i Ci(2πflti)
)

,

(4.18)
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with: Ci, the cosine integral, defined in appendix A. When either ti = tj , ti = 0
or tj = 0, the corresponding term simplifies to

−cos(2πfxty)
2f2

x

+ πty
sin(2πfxty)

fx
− 2π2t2

y Ci(2πfxty) = − 1
2f2

x

,

for x ∈ {l, h} and ty ∈ {ti, tj , |tj − ti|}.

Similar as in section 3.2.3, the upper frequency bound, fh, is assumed very
large: fh →∞. Using the property of the cosine integral: limx→∞ Ci(x) = 0,
eq. (4.18) is simplified:

RΦe
(ti, tj) = 2f2

nhf

(cos
(
2πfl(tj − ti)

)
2f2

l

− π(tj − ti)
sin
(
2πfl(tj − ti)

)
fl

+ 2π2(tj − ti)2 Ci
(
2πfl|tj − ti|

)
+ 1

2f2
l

− cos(2πfltj)
2f2

l

+ πtj
sin(2πfltj)

fl
− 2π2t2

j Ci(2πfltj)

− cos(2πflti)
2f2

l

+ πti
sin(2πflti)

fl
− 2π2t2

i Ci(2πflti)
)

.

Reordering further to

RΦe
(ti, tj) = 4π2(tj − ti)2f2

nhf

(
− 1

2
sin2(πfl(tj − ti)

)
π2f2

l (tj − ti)2 −
sin
(
2πfl(tj − ti)

)
2πfl(tj − ti)

+ Ci
(
2πfl|tj − ti|

)
+ 1

4π2f2
l (tj − ti)2

)

+ 4π2t2
jf2

nhf

(
1
2

sin2(πfltj)
π2f2

l t2
j

+ sin(2πfltj)
2πfltj

− Ci(2πfltj)− 1
4π2f2

l t2
j

)

+ 4π2t2
i f2

nhf

(
1
2

sin2(πflti)
π2f2

l t2
i

+ sin(2πflti)
2πflti

− Ci(2πflti)−
1

4π2f2
l t2

i

)
+ 1

f2
l

f2
nhf .

(4.19)
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As in section 3.2.3, it is assumed that the lower frequency limit, fl, is much
smaller than the inverse of the observed time, ty ∈ {ti, tj , |tj − ti|} : ∀ty ∈ R>0 :
fl ≪ 1

ty
. Therefore, πflty ≪ 1. Using the property limx→0

sin(x)
x = 1, and using

the Taylor expansion for Ci(x) around x = 0, eq. (4.19) is further simplified for
ti > 0, tj > 0 and ti ̸= tj :

RΦe
(ti, tj) = 4π2(tj − ti)2f2

nhf

(
−3

2 + γ+ ln
(
2πfl|tj − ti|

))

+ 4π2t2
jf2

nhf

(
3
2 − γ− ln(2πfltj)

)

+ 4π2t2
i f2

nhf

(
3
2 − γ− ln(2πflti)

)
.

(4.20)

When ty = 0 for ty ∈ {ti, tj , |tj − ti|}, the corresponding term in eq. (4.20)
reduces to zero: 4π2t2

yf2
nhf

( 3
2 − γ− ln(2πflty)

)
= 0. Equation (4.20) can then

further be simplified to obtain eq. (4.6).



Part II

Model Capabilities
Tuning of Design Parameters

89





Chapter 5

Configurable ROs

This chapter is based on the following publications:

Design and Analysis of Configurable Ring Oscillators for True
Random Number Generation Based on Coherent Sampling
Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2021

Contribution: main author.

An Energy and Area Efficient, All Digital Entropy Source
Compatible with Modern Standards Based on Jitter Pipelining
Adriaan Peetermans, and Ingrid Verbauwhede
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2022

Contribution: main author.

5.1 Background and Context

Engineers often rely on digital circuit techniques to build ESs because it simplifies
integration within digital systems, enhances portability across technology nodes,
between ASIC and FPGA platforms, and among different FPGA families and
vendors. Additionally, digital logic benefits from further technology scaling.
However, implementing ESs with only digital logic is challenging due to limited
ES-specific resources and techniques available. Typically, these ESs are based
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on either the unpredictability of metastable memory elements [17, 91] or the
timing jitter in free-running oscillators [6, 86].

As discussed in section 2.4.1, TRNG designers must consider the feasibility of
the ES on the given hardware platform (FPGA or ASIC), portability across
different FPGA families and vendors, different ASIC technology nodes, design
constraints, and design effort. Unlike most digital designs, ESs are typically
not solely described using an HDL. Beyond the HDL description, many ESs
require manual set-up or placement and routing constraints. For example,
designs based on Self-Timed Ring (STR) oscillators [13] and DCs [73, 93]
require placement constraints to be set up for each FPGA family, limiting their
portability. Additionally, some ESs [86] do not work correctly at all locations
on an FPGA, necessitating a search procedure for each individual device to find
a suitable placement.

ASIC designs also require care to ensure the circuit operates as intended. The
TERO-ES [96] requires a dynamic tuning mechanism to handle the inherent
frequency variability of the manufactured oscillator circuits due to process
variations. The tuning mechanism ensures a sufficiently small spread in realized
design parameters, which in turn leads to a desirable yield when manufacturing
the ES.

Chapter 6 will cover the design of a configurable COSO-ES, a popular ES due to
its minimal chip area requirement and implementation using only digital logic.
The COSO-ES generates two oscillating signals with similar periods, typically
created using two identically designed ROs. However, process and interconnect
delay variations make matching the periods of the two ROs challenging [70].
On an FPGA platforms, this necessitates a labor-intensive search procedure
to find two well-matched ROs, which is impractical as it must be repeated for
each individual device, even within the same FPGA family.

As briefly touched in section 2.4.1 and discussed in more detail in section 6.2.2,
the stochastic model requires a small oscillation period difference (tens of
picoseconds) to obtain a high entropy density at the ES output. Achieving this
small period difference necessitates precise frequency tuning of clock signals.
There are various ways to achieve this tuning, with the most straightforward
being the use of PLLs on both FPGA and ASIC platforms. PLLs are often
available as primitive circuit elements in FPGA devices and are designed for
clock generation. A PLL enables the creation of multiple clock signals with
a designer-chosen frequency relation, based on a reference input clock signal.
This input can either come from an external source, such as a crystal oscillator,
or be generated by another clock resource on the IC.

Another approach would be to generate the required clock signals using ROs.
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The RO can be constructed solely utilizing the primitive elements that make
up the combinatorial logic in the FPGA fabric: LUTs. This removes the
dependency of the design on often-desired circuit blocks such as PLLs and
simplifies the design effort, as LUTs are among the most abundant resources
in most common FPGA families. Additionally, ROs can be made very small,
comprising only a handful of logic gates.

Once implemented, the frequency of this RO is often fixed to a suboptimal value.
Additionally, predicting this value precisely before programming the FPGA or
fabricating the ASIC is challenging due to unique characteristics resulting from
process variations in each device. Even within a single device, the location of
the RO can significantly alter its frequency by up to 10 % [57]. This variability
in RO frequency is utilized by RO-based Physical Unclonable Functions (PUFs)
to provide a device-unique fingerprint [50].

To precisely control the frequency of the RO and achieve sufficient entropy den-
sity at the ES output, designers employ various techniques post-manufacturing
or programming. These methods include dynamically adjusting the load
capacitance and modifying the drive current strength of individual stages.
While effective in ASIC designs, these approaches are impractical for FPGA
systems due to limitations of the fixed fabric design. Consequently, FPGA
designers resort to leveraging inherent variations in wiring and logic delay for
RO frequency control.

This chapter is divided into two parts: section 5.2 discusses circuit techniques
for tuning the RO frequency specifically for use in FPGAs, while section 5.3
focuses on the ASIC platform.

5.2 Configurable ROs for FPGAs

To provide the desired RO frequency tuning control, this section proposes the
following three concepts of delay variability in FPGAs: Gate delay variability,
Wiring delay variability, and Intra-LUT delay variability, embodied in the
GateVar, WireVar and LUTVar RO, respectively. All three concepts facilitate
highly portable, easy-to-use architectures suitable for constructing RO-based
ESs without requiring specific device blocks such as PLLs, carry-chains, or
Digital Signal Processors (DSPs). Moreover, these architectures eliminate the
need for placement and routing constraints, as well as manual search procedures,
and can be described solely using an HDL, narrowing the gap between the
design of ESs and conventional digital logic.
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5.2.1 Architecture

All three architectures form a single RO that has a configuration input. Altering
the value assigned to the configuration input directly affects the oscillation
frequency. The required area to implement the RO architectures on an FPGA,
consisting of n + 1 stages, is shown in table 5.1.

Gate Delay Variability

Process variations in nanoscale CMOS technologies ensure that every transistor
has unique characteristics. These variations manifest themselves in what is
known as device mismatch in the analog design community [48]. Mismatch is
the transistor parameter variation between identically designed transistors. It
can be either systematic, due to e.g. a poor design layout, or caused by process
variations. These device variations manifest themselves as variations in the
LUT propagation delay.

In this chapter, we propose to use device variations to our advantage. Figure 5.1
shows the proposed GateVar configurable RO architecture, that uses the LUT
propagation delay variability to generate a tuneable oscillating signal. Each
column of four Multiplexers (MUXs) represents one RO stage. A select signal
enables the choice of the output of one of the four MUXs that make up the
previous stage. In this way, one MUX can be chosen from every column and a
custom chain of MUXs can be selected through this network. Due to process
variations, each chain has a unique propagation delay. An additional column
containing only NAND gates is added to provide the necessary inversion and
enable functionality. Hereby, an RO with n + 1 stages is obtained, where n
represents the number of MUX columns. Every MUX stage enables for four
different configurations (select one out of the four previous stage MUXs), which
produces a total of 4n number of delay configurations for an n + 1-stage RO.

Wire Delay Variability

Process variations affect not only transistor properties but also the interconnec-
tion circuitry. In FPGA devices, this includes both the wiring and the switching
matrices. The wires interconnecting the logic elements on a chip function as
a distributed network of resistors, capacitors, and inductors. Variations in
these circuit elements occur due to factors like line edge roughness [45] or the
materials used [89].
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n stages
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Figure 5.1: Architecture of a configurable RO (indicated as GateVar in the
remainder of this thesis), using gate delay variability.

ENABLE
OUT

CONF«2n»
CONF[0:1] CONF[2:3]CONF[2:3]CONF[0:1] CONF[2n-2:2n-1]CONF[2n-2:2n-1]

n stages

Figure 5.2: Architecture of a configurable RO (indicated as WireVar in the
remainder of this thesis), using wire delay variability.

Figure 5.2 shows the proposed WireVar RO. Each MUX represents an RO
stage and selects one of four wires originating from the previous stage’s output.
An additional NAND gate enables or disables the RO. By changing the select
input signals of the individual MUXs, different wire combinations propagate
the running edge, resulting in different RO frequencies. Each RO stage offers
four wire options, yielding 4n possible configurations for an n + 1-stage RO.

Intra-LUT Delay Variability

Variations also exist within the internal structure of LUTs. Figure 5.3 shows
the possible internal layout of a three-input LUT. The exact configuration of
LUTs in the FPGA fabric is often proprietary, but the depicted structure, using
CMOS transmission gates, is a common assumption [51], and a version of it was
patented by Xilinx [71]. Adding more inputs to the LUT increases the depth of
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Figure 5.3: Possible internal structure of a three-input LUT.
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CONF«5n»
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n stages

CONF[5:9]CONF[5:9]CONF[0:4]CONF[0:4] CONF[5n-5:5n-1]CONF[5n-5:5n-1]

Figure 5.4: Architecture of a configurable RO (indicated as LUTVar in the
remainder of this thesis), using internal LUT delay variability.

the transmission gate tree, necessitating additional buffers to maintain signal
integrity. The shaded boxes represent Static Random-Access Memory (SRAM)
cells storing the FPGA configuration.

In fig. 5.3, the LUT is configured to act as a buffer to input in0. Although
inputs in1 and in2 do not affect the logical output value, they do influence
the internal path selected to propagate the content of the SRAM cell to the
output. As proposed by [51], these unused inputs can be used as select signals
to fine-tune the LUT propagation delay.

The LUTVar RO, built from LUT buffers, is shown in fig. 5.4. For six-input
LUTs, each LUT configured as a buffer has five select inputs and one data input,
resulting in 32 configurations per stage and a total of 32n configurations for an
n + 1-stage RO. A NAND gate is added to provide an inversion and an enable
input to the RO. Additional flexibility is achieved by selecting which physical
LUT input port serves as the data input. For a six-input LUT, there are six
possible assignments for the data input, with the remaining five physical input
ports used for select inputs.
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Table 5.1: Detailed FPGA area breakdown.

Spartan 7 SmartFusion2
[LUT] [%LUT] [LUT] [%LUT]

GateVar 4n + 2 0.035(a) 8n− 1 0.083(b)

WireVar n + 2 0.012(a) 2n 0.022(b)

LUTVar n + 2 0.012(a) 2n 0.022(b)

(a) Utilized chip area proportion for four stages.
(b) Utilized chip area proportion for three stages.

5.2.2 Experimental Evaluation

All three proposed RO designs are implemented on FPGAs from two different
vendors: a Xilinx Spartan 7 (with six-input LUTs) and a Microsemi SmartFusion2
(with four-input LUTs). Each four-input MUX, the NAND gates, and
configurable LUTVar buffers fit into a six-input LUT on the Spartan 7. However,
on the SmartFusion2, a four-input MUX no longer fits into a single LUT. To
accommodate this, the design is adapted by redefining the primitives used (only
FFs and LUTs) to match the different library naming conventions of each vendor.
The synthesis tool then automatically constructs the four-input MUXs using
multiple four-input LUTs on the SmartFusion2 FPGA.

RO frequency measurements are performed using a counter method. Both the
RO output and the system clock are applied to a 16 bit asynchronous counter.
These counters are sampled at regular intervals and sent to a PC for analysis.
The number of configurable stages (n) in each experiment ranged from one to
four, except for the congestion experiment, where only four-stage ROs were
measured out. In the four-stage case, this results in 44 = 256 configuration
options for each GateVar and WireVar RO and 324 = 1 048 576 configuration
options for each LUTVar RO. To reduce measurement time, not every LUTVar
configuration was tested; instead, a Linear-Feedback Shift Register (LFSR)
generated 215 = 32 768 configuration inputs. Table 5.2 provides basic statistics
of the measured oscillation periods over all applied configuration input values
for the different experiments performed and for ROs consisting of four stages.

The experimental results presented in this section aim to answer the following
questions:

Question 1 : Can the proposed configurable RO architectures produce a wide
range of frequencies?
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Question 2 : Is searching for an optimal Global Placement (GP) inside the
FPGA chip still necessary?

Question 3 : Are Local Placement (LP) constraints still necessary?

Question 4 : Can the proposed configurable RO architectures also work on other
FPGAs?

Question 5 : How many stages are necessary?

Question 6 : What is the influence of the implementation strategy?

Question 7 : What will happen if the FPGA routing becomes highly congested?

Note. A distinction is made between GP and LP constraints: GP constraints
determine the absolute location of the circuit on the FPGA die, while LP
constraints ensure relative symmetry of wiring and LUT placement.

Each question in the list above is answered in the following subsections. First,
the two key RO performance metrics are defined, and the performance of the
different physical input ports for the LUTVar architecture is compared.

Performance Metrics

To evaluate and compare the performance of various configurable RO designs,
this thesis utilizes the concepts of RO range and RO resolution.

Definition 5.1. (Configurable RO range) Range is defined as the InterQuartile
Range (IQR) of the measured oscillation period distribution when iterating over
all select input values:

range = Q(0.75)−Q(0.25),

with Q : R → R, representing the quantile function (inverse cumulative
distribution function) of the measured RO oscillation period distribution. The
normalized range is calculated by dividing the range by the median oscillation
period length.

Definition 5.2. (Configurable RO resolution) Resolution is determined by
sorting the measured oscillation periods for all select input values and then
calculating the median distance between these sorted period lengths.

To function effectively as an ES in TRNGs, it is desirable for the oscillator to
have a wide range and a small resolution value.
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Table 5.2: Measured RO (four stages) statistics on FPGA.

Experiment RO type Period Frequency Period standard
mean [ns] mean [MHz] deviation [ns]

LUTVar0 4.347 230.1 0.015 16
Placement LUTVar5 2.274 439.7 0.000 361 0
constraints WireVar 3.721 272.0 0.3992

GateVar 3.733 270.8 0.3861

No GP or LP

LUTVar0 5.012 199.5 0.018 69
LUTVar5 2.844 351.6 0.003 573
WireVar 4.090 248.6 0.5135
GateVar 3.551 285.9 0.4268

SmartFusion2

LUTVar0 5.430 184.2 0.051 95
LUTVar3 5.523 181.2 0.1041
WireVar 6.553 165.2 1.363
GateVar 6.918 150.3 1.183
LUTVar0 4.971 201.2 0.017 78

Implementation LUTVar5 2.478 403.6 0.004 441
strategy WireVar 4.004 253.5 0.4856

GateVar 3.730 270.9 0.3731

Congestion

LUTVar0 5.707 175.2 0.020 52
LUTVar5 3.195 313.0 0.002 635
WireVar 4.242 244.8 0.7960
GateVar 6.221 161.9 0.5252

LUTVar Physical Input Port Comparison

Figures 5.5 and 5.6 display the range and resolution for LUTVar ROs with one
to four stages and physical input port numbers from zero to five on a Spartan 7
(using six-input LUTs). The figures show that the normalized range tends to
slightly decrease with more stages and higher physical input port numbers.
Conversely, the resolution improves with both an increasing number of stages
and higher physical input port numbers.
Note. The measured resolution for a four-stage LUTVar RO was minimal (less
than 0.1 ps), making accurate measurement difficult.

The initial experiments demonstrated that signal physical input ports zero and
five represent the extremes in terms of normalized range and resolution. To
save time in the subsequent experiments, only ports zero and five are tested,
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Figure 5.5: Normalized range comparison of LUTVar ROs with physical data
input port ranging from zero to five, and number of stages ranging from one to
four on a Spartan 7 FPGA.

Figure 5.6: Resolution comparison of LUTVar ROs with physical data input
port ranging from zero to five, and number of stages ranging from one to four
on a Spartan 7 FPGA.

assuming the other ports fall within these extremes.

Fixed LP, Variable GP

To address questions 1, 2 and 5 on pages 97 to 98, we first implemented all three
proposed RO architectures using manual placement on a Spartan 7 FPGA. The
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Figure 5.7: Normalized range versus resolution scatter plot for all three RO
architectures, for the number of stages ranging from one to four. Each dot
presents one out of 25 locations, uniformly selected over a Spartan 7 FPGA die.

LUTs containing the RO stages were placed symmetrically. Figure 5.7 presents
a scatter plot of normalized range versus resolution, obtained by sweeping
all the configurations. Each dot represents one of 25 test locations uniformly
distributed across the FPGA die. The shapes of the dots indicate the number
of RO stages, ranging from one to four.

As observed from fig. 5.7, all three RO architectures achieve a resolution smaller
than 1 ns. The WireVar and GateVar architectures achieve a normalized range
exceeding 10 %. Although the LUTVar architectures provide a finer resolution,
their normalized range is smaller compared to the WireVar and GateVar designs.
GP has minimal impact on the RO performance for all three designs, with the
LUTVar ROs achieving the best resolution with four stages.

No Placement Constraints

To answer question 3 on page 98, the previous experiment was repeated on a
Spartan 7 FPGA, this time without applying any LP and GP constraints. For
all three architectures, the ROs are described by solely using an HDL.

Figures 5.8 and 5.9 display the normalized range and the resolution for all
three RO architectures. Despite the absence of GP and LP constraints, the
WireVar and GateVar architectures achieved a resolution finer than 0.1 ns. The
LUTVar exhibited an even better resolution. For the WireVar and GateVar ROs
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Figure 5.8: Normalized range versus number of stages plot for all three RO
architectures, for the number of stages ranging from one to four. No placement
constraints are applied to the ROs on a Spartan 7 FPGA.

Figure 5.9: Resolution versus number of stages plot for all three RO architectures,
for the number of stages ranging from one to four. No placement constraints
are applied to the ROs on a Spartan 7 FPGA.

with two or more stages, a normalized range exceeding 10 % was attained. The
LUTVar continued to show a relatively narrow normalized range.
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Figure 5.10: Normalized range versus number of stages plot for all three RO
architectures, for the number of stages ranging from one to four. No placement
constraints are applied to the ROs on a SmartFusion2 FPGA.

FPGA Vendor Portability

Focussing on question 4 on page 98, the previous experiment (with no GP or
LP constraints) was repeated on a Microsemi SmartFusion2 FPGA. The LUTVar
ROs used four-input LUTs and signal physical input ports zero and three were
considered.

Figures 5.10 and 5.11 present the measured normalized range and resolution,
respectively, which are comparable to the results on the Spartan 7 FPGA. These
findings demonstrate the portability of all three proposed RO architectures.

Implementation Strategy

For question 6 on page 98, the experiment was repeated on a Spartan 7 FPGA,
using the Area Explore implementation strategy instead of the default strategy
in the Xilinx Vivado design tool. This strategy performs multiple optimization
runs to minimize circuit area [92]. The HDL implementation of the RO circuit
remained unchanged.

From the experimental results shown in fig. 5.12, we conclude that the
implementation strategy choice minimally impacts the performance of all three
proposed RO designs. The range-resolution curves obtained with the default
strategy (dashed curve) closely match those for the Area Explore strategy (solid
curve) across ROs with one to four stages.
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Figure 5.11: Resolution versus number of stages plot for all three RO
architectures, for the number of stages ranging from one to four. No placement
constraints are applied to the ROs on a SmartFusion2 FPGA.

Figure 5.12: Normalized range versus resolution plot for all three RO
architectures, for the number of stages ranging from one to four on a Spartan 7
FPGA. The solid lines represent the Area Explore implementation strategy in
the Xilinx Vivado design tool. The dashed lines represent the default strategy
(equal to the data from the omitted placement constraints experiment).
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Figure 5.13: Normalized range versus resolution plot for all three RO
architectures, with only four stages on a congested Spartan 7 FPGA. The
dashed lines represent a non-congested FPGA (equal to the data from the
omitted placement constraints experiment).

High Resource Utilization

Finally, to address question 7 on page 98, we augmented the FPGA utilization
to assess the robustness of each RO architecture against high routing congestion.
This was achieved by implementing a substantial number of 64-bit adder
structures alongside the RO circuitry, resulting in 96 % and 72 % utilization
of available LUTs and FFs, respectively. The rationale behind this approach
is that increased congestion would force the place and route tools to lengthen
the physical distance (and thus routing delay) between the various components
constituting the RO circuitry.

The outcomes of this experiment are depicted in fig. 5.13, illustrating the
range-resolution points for the different RO architectures. Only four stage-ROs
have been considered to reduce measurement time. Remarkably, all three
RO architectures exhibit comparable performance to the non-congested FPGA
results (dashed curve).
Note. While fig. 5.13 implies that the degree of congestion has minimal impact
on RO performance, table 5.2 highlights a notable reduction in the RO frequency
for the GateVar architecture.



106 CONFIGURABLE ROS

Table 5.3: Summary of FPGA experimental results.

Metric GateVar WireVar LUTVar

Range
Resolution
Omit GP
Omit LP
Portable
Implementation robustness
Congestion resilience

5.2.3 FPGA Conclusion

Since all the questions posed on pages 97 to 98 have been positively answered
in this section, we conclude that the three proposed RO architectures provide a
robust foundation for constructing reliable ESs on FPGA platforms.

However, not all three presented RO architectures performed equally well. Both
the WireVar and GateVar topologies exhibit a larger normalized range across
all experiments conducted in this section compared to the LUTVar topology.
On the other hand, the LUTVar topology achieves a finer resolution overall
compared to the WireVar and GateVar architectures. As will be demonstrated
in chapter 6, the advantage of the WireVar and GateVar architectures having
a larger range outweighs the finer resolution achieved by the LUTVar topology
when implementing a COSO-ES. In conclusion, table 5.3 summarizes the FPGA
experimental results, comparing the strengths and weaknesses of each RO
topology.

5.3 Configurable ROs for ASICs

Frequency tuning of CMOS ROs in ASICs is a well-developed field of research
and is significantly more established in ASICs than in FPGAs. Various frequency-
controlling techniques have been proposed, largely due to the greater design
freedom available in ASICs compared to FPGAs. Some techniques utilize a
variable capacitive load on each RO-stage [76], while others employ a variable
resistor between consecutive stages using a transmission gate structure [98].
Another approach involves limiting the RO stage’s drive current [33]. This brief
summary is far from exhaustive.
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For the purpose constructing ESs, the proposed configurable RO designs in this
thesis must consider the following constraints:

• Digitally controllable: Eliminate the requirement for a Digital-to-Analog
Converter (DAC) to convert the digital control signal into an analog
controlling voltage.

• Transistor only: The RO should be constructed exclusively using MOS
transistors, without the need for capacitors, resistors, or inductors.

• Standard cell compatible: The RO layout should be compatible with other
digital circuitry by using a row-based design similar to standard cells.

5.3.1 Architecture

This thesis describes two configurable RO styles specifically designed for use with
CMOS technologies. In both architectures, a digital configuration input directly
influences the oscillation frequency by modifying the stage’s current drive
strength, either linearly or exponentially. The area required to implement the
RO architectures on three different ASIC technologies is presented in table 5.4.

Current-Starved Inverter

The central building block for both described RO architectures is the Current-
Starved Inverter (CSI), as described by [72]. As shown in fig. 5.14 (bottom left),
a configuration input, conf, controls the drive current for this inverter stage.
When the conf signal is low, both transistors M0 and M3 are off, resulting in a
reduced drive strength for the gate. When the conf signal is high, transistors
M1 and M2 create a typical inverter pair.

By scaling the width of the transistors, a CSI stage with increased current drive
strength can be achieved, as illustrated in fig. 5.14 (middle). Conversely, by
chaining multiple minimal-sized transistors, as shown in fig. 5.14 (right), a CSI
with reduced drive strength is obtained. The symbol representing a CSI of size
n, as used throughout this thesis, is shown in fig. 5.14 (top left).

Linear Drive Strength Increase

Utilizing the CSI, an RO can be constructed where the drive strength increases
linearly with the applied configuration value. Figure 5.15 illustrates the principle
of combining multiple CSIs in parallel, along with an optional inverter that
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Figure 5.15: An example of a configurable RO architecture with a linear increase
in drive strength.

ensures the RO oscillates when the all-zero configuration input is applied. Each
parallel CSI is identical in size, ensuring that each bit of the conf signal has a
consistent impact on the resulting oscillation frequency. The realized oscillation
frequency primarily depends on the Hamming weight of the applied conf signal.

Throughout the rest of this thesis, this RO will be referred to as LinX×Y, where
X denotes the number of stages and Y denotes the number of parallel CSIs per
RO stage.
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Figure 5.16: An example of a configurable RO architecture with an exponential
increase in drive strength.

Table 5.4: Detailed ASIC area breakdown.

Technology RO type Transistor pairs Normalized area Area
[-] [kF] [µm2]

65 nm Lin2×4 20 3.980 16.817

40 nm Lin2×8 34 7.335 11.736
Exp4×4 430 88.754 142.006

28 nm Lin2×8 36 11.733 9.199
Exp4×4 142 29.484 23.115

Exponential Drive Strength Increase

Instead of instantiating each CSI with equal size, each bit of the conf
signal can be applied to a CSI of varying size. These sizes can be chosen
exponentially, as shown by fig. 5.16. This approach makes the oscillation
frequency predominantly dependent on the configuration value applied to the
RO. An increasing configuration value should theoretically result in a higher
oscillation frequency. However, due to manufacturing variations, a smaller
configuration value with a larger Hamming weight (e.g., a value of 7) might
produce a higher oscillation frequency than a larger configuration value with a
smaller Hamming weight (e.g., a value of 8).

This type of configurable RO will be denoted as ExpX×Y, where X represents the
number of stages and Y indicates the number of parallel CSIs per RO stage.
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Table 5.5: Measured RO statistics on ASIC.

Technology RO type Period Frequency Period standard
mean [ps] mean [GHz] deviation [ps]

65 nm Lin2×4 579.5 1.813 80.37

40 nm Lin2×8 206.6 5.192 49.07
Exp4×4 715.8 1.698 462.5

28 nm Lin2×8 187.3 5.613 33.93
Exp4×4 2809 0.4332 1498

5.3.2 Experimental Evaluation

The described RO types have been implemented using three different CMOS
technologies: 65 nm, 40 nm and 28 nm. In each technology except for the 65 nm
technology, both the linear and exponential RO types have been implemented.

RO frequency measurements were conducted by downscaling the RO output
frequency using an on-chip frequency scaler and analyzing the scaled oscillating
signal off-chip with an oscilloscope. In the case of the 65 nm technology, on-chip
frequency counters were also employed. Table 5.5 presents basic statistics of
the measured oscillation periods across all applied configuration input values
for the various CMOS technologies and RO types investigated.

65 nm Technology

We implemented a linear configurable RO architecture with two stages and four
configurable CSIs per stage, denoted as Lin2×4. Additionally, each RO stage
includes one inverter in parallel, which remains active irrespective of the conf
signal value. Three sample chips have been measured out.

Figure 5.17 illustrates the median oscillation period length for each of the
eight bits in the conf input signal. Each bit is represented by a vertical line,
with the bottom dot for the bit set to zero and a top dot for the bit set to
one. Additionally, dashed horizontal lines depict the median RO period length
obtained when sweeping across all values of the conf signal. The vertical
lines are determined by varying all other bits in the conf signal. As observed
in fig. 5.17, each bit in the conf signal exerts a similar influence on the RO
oscillation period length.
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Figure 5.17: Configuration bit influence on the RO period length for the Lin2×4
architecture in a 65 nm ASIC technology.

40 nm Technology

Two types of ROs were implemented: a linear architecture with two stages and
eight CSIs per stage, denoted as Lin2×8, and an exponential architecture with
four stages, each containing four CSIs and one regular inverter of size 1, denoted
as Exp4×4. The four parallel CSIs in each stage of the Exp4×4 RO are sized
according to the sequence 1, 4, 16, and 32. Measurements were taken from two
sample chips.

The influence of the individual bits of the conf signal is shown in figs. 5.18
and 5.19 for the Lin2×8 and Exp4×4 designs, respectively. The Lin2×8
architecture performs similarly to the Lin2×4 presented in the previous section.
In the Exp4×4 RO, the bits connected to the larger CSIs have a greater influence
on the oscillation period than the bits connected to the smallest CSIs.

28 nm Technology

Similar to the previous subsection, two ROs were implemented: a linear
architecture with two stages, each stage having eight CSIs and one regular
inverter, denoted as Lin2×8 and an exponential architecture with four stages,
each stage having four CSIs and one regular inverter of size 1

16 , denoted as
Exp4×4. The four parallel CSIs in each stage of the Exp4×4 RO are sized
according to the sequence: 1

8 , 1
4 , 1

2 and 1. Both ROs include a regular inverter
in parallel for each stage to ensure oscillation when the all-zero configuration
input is applied. Measurements were taken from three sample chips.
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Figure 5.18: Configuration bit influence on the RO period length for the Lin2×8
architecture in a 40 nm ASIC technology.

Figure 5.19: Configuration bit influence on the RO period length for the Exp4×4
architecture in a 40 nm ASIC technology.
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Figure 5.20: Configuration bit influence on the RO period length for the Lin2×8
architecture in a 28 nm ASIC technology.

Figure 5.21: Configuration bit influence on the RO period length for the Exp4×4
architecture in a 28 nm ASIC technology.

As shown in figs. 5.20 and 5.21, which present the measurement results for
the Lin2×8 and Exp4×4 architectures respectively, both architectures perform
similarly to those described in the previous subsections.

5.3.3 ASIC Conclusion

Figure 5.22 summarizes the ASIC configurable RO measurements by plotting
the normalized range versus the obtained resolution for all RO architectures
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Figure 5.22: Normalized range versus resolution plot for all three ASIC
technologies tested.

and CMOS technologies discussed in this section. Different dots in the figure
represent different measured chips. Both the Exp4×4 architectures in the 28 nm
and 40 nm technologies exhibit a large normalized range of over 65 %. The
finest resolution is achieved with the Lin2×8 architectures in the 28 nm and
40 nm technologies. While having a similar normalized range of around 20 %,
the Lin2×4 architecture in the 65 nm technology produces a less fine resolution
compared to the other linear architectures, primarily due to the smaller number
of configuration input bits (8 bit compared to 16 bit).

5.4 Conclusion

This chapter demonstrates that highly tunable RO designs can be achieved on
both FPGA and ASIC platforms. We achieved normalized range values of up to
10 % on FPGA and up to 80 % on ASIC, showcasing the controllability of the
designs. Additionally, resolutions finer than 1 ps were obtained across all ASIC
technologies and FPGA vendors tested. The presented architectures utilize only
digital control signals, ensuring simplicity and area efficiency. Furthermore,
their high portability is asserted by the exclusive use of basic circuit components:
LUTs for FPGA and CMOS transistors for ASIC.

Future research should concentrate on examining the jitter properties of the RO
architectures discussed in this chapter to further improve their reliability and
assist in selecting the optimal RO topology based on the specific application
requirements.



Chapter 6

Configurable TRNGs for
FPGAs

This chapter is based on the following publications:

A Highly-Portable True Random Number Generator Based on
Coherent Sampling
Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
International Conference on Field Programmable Logic and Applications
(FPL), 2019

Contribution: main author.

Design and Analysis of Configurable Ring Oscillators for True
Random Number Generation Based on Coherent Sampling
Adriaan Peetermans, Vladimir Rožić, and Ingrid Verbauwhede
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2021

Contribution: main author.

6.1 Background and Context

Implementing TRNGs on FPGAs is becoming increasingly popular, due to
the FPGA’s easy reconfigurability and significantly shorter design turnaround
time compared to ASIC platforms. As discussed in section 2.4.1, ensuring good
performance and robustness often requires a complex implementation procedure

115
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for many TRNG designs, frequently involving manual placement and routing.
In this chapter, we implement, analyze, and compare the three dynamic RO
calibration mechanisms introduced in section 5.2, embedded in a COSO-based
ES.

The ES set-up procedure automatically selects a configuration that meets
security requirements. In our experiments, we demonstrate that two of the three
proposed mechanisms can ensure correct ES operation even with automatic
placement and when porting the design to another FPGA family. We generated
random bits on both a Xilinx Spartan 7 FPGA and a Microsemi SmartFusion2
FPGA, achieving throughputs of 4.65 Mbit s−1 and 1.47 Mbit s−1, respectively.
Without post-processing, the generated bits passed the AIS 31 statistical tests.

As discussed in section 2.2, the output of a TRNG should pass statistical
tests such as NIST SP 800-22 [74], NIST SP 800-90B [83], or FIPS 140-2 [58].
However, merely passing these statistical tests is insufficient to guarantee the
security of a TRNG. According to the AIS 31 [39] and NIST SP 800-90B [83]
recommendations, the security of a TRNG should preferably be justified by a
stochastic model of the ES.

This chapter focuses on the COSO-based ES, originally proposed by [43].
The stochastic model for this ES was first developed by [9] for PLL-based
implementations. A more general stochastic model, proposed by [95], does not
specify the source of the random jitter , as it is based on the period difference
between two oscillators of any kind.

The COSO-ES combines substantial throughput with minimal area requirement,
making it an attractive option for an FPGA-compatible ES architecture.
Existing COSO-ES implementations can achieve a throughput on the order of
1 Mbit s−1 [70], but they require an extensive design effort, a term introduced
in section 2.4.1. The ES generates two oscillating signals with similar periods,
typically using two identically designed ROs. As noted in section 5.1, matching
RO periods on FPGA platforms is particularly challenging due to process and
interconnect delay variations [70]. This difficulty necessitates a significant design
effort, involving a search procedure to find two well-matched ROs, making the
COSO-ES implementation impractical as this procedure must be repeated for
every device, even within the same FPGA family.

In this chapter, we propose a highly portable and user-friendly architecture
for a COSO-ES that does not require any device-specific blocks such as PLLs,
carry-chains, or DSPs. Additionally, it demands no placement and routing
constraints and eliminates the need for a manual search procedure. The main
contributions are as follows:
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• We propose a new ES featuring reconfigurable ROs that enable matching
two oscillating periods with precision in the range of a few picoseconds.
This ES utilizes only LUTs and FFs, avoiding the need for device-specific
resources and ensuring portability across different FPGA families and
vendors.

• We experimentally demonstrate that precise matching is achievable without
placement and routing constraints. The Verilog source code for this ES is
open source and publicly available1.

• We have developed a control circuit that monitors the health of the
ES, dynamically adjusts matching conditions, and notifies the user if
satisfactory matching cannot be achieved.

This chapter is structured as follows: in section 6.2, we introduce the working
principles and stochastic model of the COSO-ES. Section 6.3 details the
architecture of our novel ES. Experimental validation of its functionality is
provided in section 6.4. Finally, section 6.5 offers a discussion on the results
and compares performance with existing literature. The chapter concludes with
a summary and outlines future directions in section 6.6.

6.2 Coherent Sampling

The COSO designs incorporate two oscillators within the ES. These oscillators’
periods must satisfy one of two conditions: either their ratio matches a known
rational fraction, typical in PLL-based designs, or the ratio is finely tuned to
approach unity, as is the case with ROs. Here, our focus is on the latter scenario
to avoid dependency on device-specific components like PLLs.

6.2.1 Stochastic Model

Figure 6.1 depicts the architecture of the COSO-ES. A DFF is employed for
sampling, which generates a low-frequency beat signal labeled as Sbeat. The
period of Sbeat is measured using a counter clocked by the sampling signal. This
counter resets every period of Sbeat. The counter’s output signal, denoted as
CSCnt, represents a discrete random variable, C, influenced by the independent
random jitter present in both oscillators.

1https://github.com/KULeuven-COSIC/COSO-TRNG

https://github.com/KULeuven-COSIC/COSO-TRNG
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Figure 6.1: Architecture of the COSO-ES.

According to the model presented in [95], the mean and the variance of this
random variable are

E[C] = E[TRO0]
E[∆] , (6.1)

Var[C] = E[C]Var[∆]
E[∆]2 . (6.2)

Here, TRO0 and TRO1 represent the period lengths for the RO0 and RO1 ROs,
respectively. Mean and variance of the period difference ∆ are equal to:

E[∆] =
∣∣E[TRO1]−E[TRO0]

∣∣,
Var[∆] = Var[TRO0] + Var[TRO1]. (6.3)

The random variable B, representing the Least Significant Bit (LSB) of the
CSCnt signal, is now utilized as the generated random bit.

6.2.2 Entropy Rate Optimization

Calculating the entropy density per generated bit requires knowledge of the
exact distribution of C. Deriving an analytical expression for this distribution
starting from the stochastic model is a challenging task. In [95], this problem
was addressed by assuming that the resulting distribution follows a normal
distribution. This assumption simplifies the stochastic model to the ERO-
ES model as presented in [49]. However, our findings indicate that the
approximation employed in [95] does not hold true when the oscillators are
highly matched, meaning that the period difference is of the same order of
magnitude as the accumulated jitter.
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Therefore, we estimate the distribution of C conducting an event-driven
simulation of the COSO-ES. Variables for this model include:

• The sampled signal’s average period length: E[TRO0]

• The average period length difference: E[∆]

• The linear jitter strength: Var[TRO0]
E[TRO0]

In the model, we assumed both random variables TRO0 and TRO1 to be
independent and normally distributed:

TRO0 ∼ N
(
E[TRO0], Var[TRO0]

)
,

TRO1 ∼ N
(
E[TRO1], Var[TRO1]

)
.

Another assumption is made by equating the variance of both oscillating signals:

Var[TRO0] = Var[TRO1].

This assumption can be justified by the fact that both ROs are implemented
in the same technology, implying they have similar jitter characteristics.
Additionally, the period difference, E[∆], is small.

Based on the estimated distribution of C, we calculate the probabilities of the
random output bit B being zero or one as

∀i ∈ {0, 1} : P[B = i] =
∞∑

j=0
P[C = 2j + i].

The min-entropy is then calculated as

Hm[B] = − log2
(

max
i∈{0,1}

P[B = i]
)
.

The expected throughput is equal to

tp = 1
E[C]E[TRO1] .

The equations above enable us to estimate the Min-entropy-Throughput Product
(HTP).

Figures 6.2 and 6.3 present the simulation results for platform parameters
obtained for a Spartan 7 and SmartFusion2 implementation, respectively. In the
upper part, the shaded region represents the min-entropy exceeding a value
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Figure 6.2: Estimated min-entropy (top) and HTP (bottom) versus E[∆] and
E[C] for a Spartan 7 implementation, E[TRO1] = 3.69 ns and Var[TRO1] =
(4.1 ps)2.

of 0.91 bit per output bit, required by the AIS 31 standard [39]. The cross
markers denote the point with the minimum E[C] that meets this requirement.
Configuration values of E[C] and E[∆] to the right of these markers are compliant
with the AIS 31 standard. The shading gradient indicates that configurations
further to the right have reduced throughput, making them less desirable. To
achieve maximum throughput, configurations as close as possible to the markers
are preferred. The lower part of the figures displays the HTP, indicating a
peak for a specific value of E[∆]. This peak represents a trade-off between
ensuring sufficient accumulation time for entropy generation while maintaining
high throughput.

6.3 COSO-ES Architecture

6.3.1 Entropy Source

The two ROs, RO0 and RO1, that form the ES as shown in fig. 6.1, are built using
the configurable RO architectures detailed in section 5.2. Four RO topologies
are implemented: GateVar, WireVar, LUTVar0, and LUTVar5.
Note. When using a SmartFusion2 instead of a Spartan 7 FPGA platform, the
LUTVar5 topology is replaced by the LUTVar3 topology.
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Figure 6.3: Estimated min-entropy (top) and HTP (bottom) versus E[∆] and
E[C] for a SmartFusion2 implementation, E[TRO1] = 6.25 ns and Var[TRO1] =
(3.2 ps)2.

Table 6.1: Total number of configuration values and number of configuration
bits per RO when both ROs consist of n + 1 stages.

RO type GateVar WireVar LUTVar

Configurations (4n)2 (4n)2 (32n)2

Configuration bits (k) 2n 2n 5n

Table 6.1 provides the total number of configuration values for both RO0 and
RO1 combined when both ROs are implemented using n + 1 stages. To achieve
optimal period length matching, both ROs always have an equal number of
stages. Practical implementation details for each RO topology are given in
section 5.2.1 of the previous chapter.

6.3.2 Digitization

A detailed hardware diagram of the digitization module is provided in fig. 6.4.
In this set-up, RO0 is sampled by a clock signal generated by RO1 using DFF0.
The output of DFF0 (Sbeat) is used to clock DFF1, DFF2, and DFF3. These
DFFs regulate the enabling and clearing of the asynchronous counter, which
measures the period length of Sbeat relative to the period length of the oscillating
signal produced by RO1. Synchronization with other logic occurs via a two-way
handshake, using the signals ack and req generated by DFF3. The asynchronous
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Figure 6.4: Detailed architecture of the COSO-ES digitization.

counter produces an m-bit signal (CSCnt) that the controller uses to configure
the ROs, with the LSB of this value being used to generate random bits.

6.3.3 Controller

Simplified pseudocode describing the controller is depicted in algorithm 6.1.
Its function is monitoring if the value of the CSCnt signal (C) is still within
predefined boundaries (l and h in the algorithm, representing the lower and
upper bound respectively) and selecting a new 2k-bit RO configuration (S) if
necessary, each RO receives a k-bit configuration signal. The relation between
the number of configuration bits, k and the number of RO stages, n + 1 is
provided in table 6.1. E[C] is directly related to the matching of the two ROs
(E[∆]) via eq. (6.1). The controller sequentially goes through the possible
configurations until a suitable one is found. Optimal boundaries have to be
chosen to maximize the throughput and provide sufficient entropy from figs. 6.2
and 6.3. A smaller range [l, h) enables finer control, but increases the controller
latency to find a suitable configuration.

This controller activates at start-up to find a configuration that validates the
stochastic model. After start-up, the controller remains actively checking the
produced C values and dynamically recalibrates the ROs when necessary.
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Algorithm 6.1 Controller pseudocode.

Input: C[m-1:0], req
Output: S[2k-1:0], matched
Global constant: l, h

1: good_samples[6:0] ← 0
2: sample_cnt[6:0] ← 0
3: S[2k-1:0] ← 0
4: matched ← 0
5: while true do
6: if req then
7: if l ≤ C[m-1:0] < h then
8: good_samples[6:0] ← good_samples[6:0] + 1
9: matched ← 1

10: end if
11: if sample_cnt[6:0] == 27 - 1 then
12: if good_samples[6:0] == 0 then
13: S[2k-1:0] ← S[2k-1:0] + 1
14: matched ← 0
15: end if
16: good_samples[6:0] ← 0
17: end if
18: sample_cnt[6:0] ← sample_cnt[6:0] + 1
19: end if
20: end while

6.4 Experimental Results

In this section, we will experimentally verify the correct operation of the COSO-
ES using the three proposed RO architectures. We will revisit the questions
posed in section 5.2.2 on pages 97 to 98, this time focusing on the obtained C
values to assess the performance of the ES.

The questions on pages 97 to 98 are repeated here, rephrased to focus on
evaluating the ES:

Question 1 : Can the proposed configurable COSO-ES produce a wide range of
C values?

Question 2 : Is searching for an optimal GP inside the FPGA chip still
necessary?
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Question 3 : Are LP constraints still necessary?

Question 4 : Can the proposed configurable COSO-ES also work on other
FPGAs?

Question 5 : How many RO stages are necessary?

Question 6 : What is the influence of the implementation strategy?

Question 7 : What will happen if the FPGA routing becomes highly congested?

Each of these questions is addressed in the following subsections. First, the
experimental set-up is further explained.

Measured C distributions will be visualized using box plots. A box plot displays
the data distribution, with 50 % of the data contained within the box. The
median of the distribution is represented by a horizontal line inside the box.
A data point is considered an outlier (marked with a dot in the plot) if it is
more than 1.5 times the interquartile range from the nearest quartile. All box
plot figures depicting a C distribution will be overlaid on a gradient-shaded
background representing configurations with sufficient entropy density per bit.

6.4.1 Experimental Set-up

We first implemented the proposed ES and digitization as depicted in Fig. 6.4 on
a Xilinx Spartan 7 FPGA. Unless otherwise indicated, the number of configurable
stages (n) in any experiment, except in sections 6.4.3 and 6.4.5 (where only
three stages were used to reduce measurement time), is set to four. This results
in a total of 44 = 256 configurations for each GateVar and WireVar RO, and
324 = 1 048 576 configurations for each LUTVar RO. To reduce measurement
time, similar to section 5.2.2, we did not test every LUTVar configuration but
instead used an LFSR to generate 215 = 32 768 configuration inputs.

For realistic values of Var[TRO1] and E[∆], E[C] is below 256, allowing the
use of an 8-bit asynchronous counter in the digitization module. However, for
the initial experiments, we used a 16-bit counter. This counter is reset every
period of Sbeat and read by the controller. The LSB of this counter is used as
the generated random bit.

6.4.2 Feasibility of the Architecture

Addressing question 1 on page 123, we first implemented the ROs and
digitization, with manual GP and LP constraints on a Xilinx Spartan 7 FPGA.
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Figure 6.5: Obtainable C values with fixed GP and LP constraints on a Spartan 7
FPGA.

In fig. 6.5, the box plot shows the obtained C realizations. The GateVar and
WireVar architectures can achieve a wide range of values up to 1 × 104 (∆ as
low as 0.4 ps), allowing the controller to find a configuration near the optimal
HTP. In contrast, the LUTVar ROs do not provide a sufficiently wide range
of oscillation frequencies to achieve high C values. This limitation is due to
the restricted range of frequencies a single LUTVar RO can produce, making
it difficult to compensate for the inherent mismatch between the two ROs by
reconfiguring the oscillator pair.

6.4.3 Global Placement

To verify question 2 on page 123, assessing whether the RO architectures can
achieve RO matching without dependence on GP constraints, we conducted the
previous experiment across 25 manually selected locations spanning the entire
FPGA. LP constrains were maintained to enhance RO matching.

Figures 6.6 to 6.9 depict box plots for each tested location using the GateVar,
WireVar, LUTVar0, and LUTVar5 architectures, respectively. In this experiment,
C values are computed based on measured RO frequencies rather than testing
every possible RO pair, reducing measurement time. Each ES employs ROs
with three configurable stages.

This experiment demonstrates that adequate matching can be achieved at every
tested location for the GateVar and WireVar architectures. This stands in stark
contrast to earlier designs utilizing the COSO-ES with ROs [70, 85, 95], where
a significant design effort was required to manually identify FPGA locations
with satisfactory matching between the ROs.
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Figure 6.6: Calculated C values using the GateVar topology at 25 different
locations on a Spartan 7 FPGA.

Figure 6.7: Calculated C values using the WireVar topology at 25 different
locations on a Spartan 7 FPGA.

The results from the LUTVar architectures resemble those observed in previous
COSO-ES designs in literature: certain locations exhibit well-matched ROs and
achieve high C values. However, these locations are still dispersed across the
FPGA fabric (12 out of 25 locations for LUTVar0 and 13 out of 25 locations for
LUTVar5).
Note. The LUTVar0 topology offers a broader range of C values compared to
the LUTVar5 topology, consistent with the larger period length range observed
in section 5.2.2 of the previous chapter.
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Figure 6.8: Calculated C values using the LUTVar0 topology at 25 different
locations on a Spartan 7 FPGA.

Figure 6.9: Calculated C values using the LUTVar5 topology at 25 different
locations on a Spartan 7 FPGA.

6.4.4 Local Placement

The next experiment addresses question 3 on page 124 and demonstrates that
the correct operation of the ES does not necessitate LP or GP constraints.

Figure 6.10 illustrates the measured C values for an implementation on a
Spartan 7 FPGA, without any specified placement constraints. The figure
demonstrates that matching can still be achieved for the GateVar and WireVar
RO architectures. In this particular instance, both LUTVar architectures also
achieve sufficiently high C values. However, as will be discussed in section 6.4.7,
these outcomes are highly affected by the FPGA implementation strategy and
thus challenging for the designer to control.
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Figure 6.10: Obtained C values without specified GP and LP constraints on a
Spartan 7 FPGA.

Figure 6.11: Obtained C values without specified GP and LP constraints on a
SmartFusion2 FPGA.

6.4.5 Portability

To evaluate the portability of the ES, as considered by question 4 on page 124,
we repeated the previous experiment without any GP or LP constraints, this
time using a Microsemi SmartFusion2 FPGA with three-stage ROs.

The results depicted in fig. 6.11 are similar to those obtained on the Spartan 7
FPGA. Notably, the GateVar and WireVar architectures demonstrate consistent
performance, confirming the portability claim.

6.4.6 Optimal Number of Stages

In this experiment, we varied the number of stages to address question 5 on
page 124, assessing the impact on achievable C values. Increasing the number
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Figure 6.12: Obtained C values for different number of RO stages and omitted
GP and LP constraints on a Spartan 7 FPGA.

of stages expands the configuration space, enhancing the likelihood of achieving
adequate matching.

Figure 6.12 presents the outcomes of this experiment conducted on a Spartan 7
FPGA, where placement constraints were omitted. The GateVar and WireVar
architectures exhibit minimal or no C values falling within the shaded region
when utilizing one or two stages. However, configurations employing three or
more stages demonstrate a substantial number of C values within this desirable
range. Conversely, the LUTVar architectures only achieve sufficient C values in
the desirable range when employing four stages.

6.4.7 Implementation Strategy

To address question 6 on page 124, we conducted a repeat of the previous
experiment using the Area Explore implementation strategy instead of the
default strategy in the Xilinx Vivado design tool. The HDL implementation of
the ES circuit remained unchanged.

Figure 6.13 presents the results of the experiment. The GateVar and WireVar
architectures with four stages consistently yield C values within the shaded
region. For WireVar with three stages, only a few configurations achieve
sufficiently high C values. However, LUTVar5 fails to achieve adequate RO
matching across all number of stages tested.

Based on these findings, we recommend employing the GateVar or WireVar
architecture with four stages to ensure reliable matching of the ROs, while
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Figure 6.13: Obtained C values for different number of RO stages and
omitted GP and LP constraints on a Spartan 7 FPGA, using the Area Explore
implementation strategy.

Figure 6.14: Obtained C values for omitted GP and LP constraints on a heavily
congested Spartan 7 FPGA.

maintaining a smaller RO footprint compared to configurations with more than
four stages.

6.4.8 FPGA Congestion

Finally, addressing question 7 on page 124, we increased the FPGA utilization
by employing 64-bit adder structures, similar to section 5.2.2.

The results of this experiment are depicted in fig. 6.14, showing the achieved C
values. Despite the FPGA congestion, both GateVar and WireVar architectures
still manage to attain C values within the desired range.
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Figure 6.15: Measured controller latency when selecting a new RO configuration
with variable upper C bound (h) and fixed lower C bound (l) equal to 59 on a
Spartan 7 FPGA.

6.4.9 Controller Latency

Under changing operating conditions, the current RO configuration may cease
to generate a valid C value. In such cases, the controller is required to update
the configuration select signal by sequentially scanning through subsequent
configurations. This procedure is also executed during device startup and
unavoidably introduces latency due to the scanning process. The time taken
for the selection procedure depends on the lower and upper bounds of C (l and
h respectively in algorithm 6.1). Broader bounds facilitate the selection process
since more configurations meet the criteria.

In this final experiment, we measure the latency of the selection procedure using
a variable upper bound, h. The lower bound, l, is fixed at 59 to meet the entropy
requirement illustrated in fig. 6.2. The latency results are presented in fig. 6.15.
For the GateVar topology with four stages and the WireVar topology with both
four and three stages, latency decreases as the upper bound increases, stabilizing
around an upper bound of 100. However, for the GateVar architecture with
three stages, suitable configurations are found only when the upper bound
exceeds 120, with a latency stabilizing at approximately 500 µs.

6.5 Results and Comparison

To theoretically estimate the entropy density per bit, we require the magnitude
of the jitter strength: Var[TRO0]

E[TRO0] . For the SmartFusion2 implementation, we refer
to values from [70], which used similar FPGA devices. To ensure a conservative
entropy estimate, we consider the minimum jitter strength observed across all
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tested frequencies in [70]. This minimal jitter strength is measured as 1.6 fs,
resulting in a period jitter of 3.2 ps for an RO oscillating at 160 MHz. For the
Spartan 7 implementation, we estimate the jitter strength using the variance of
the measured C values via eqs. (6.2) and (6.3), yielding a jitter strength of 4.6 fs.
Given these jitter strengths, the acceptable range of C is depicted by the shaded
area in the lower part of figs. 6.2 and 6.3. We assume that the jitter strength is
independent of the RO architecture, hence the computed bounds in these figures
are applicable irrespective of the specific RO architecture. This assumption
can be justified by the fact that all proposed RO architectures utilize the same
underlying FPGA circuitry, including LUTs and switching matrices.

Random bits were generated using the GateVar and WireVar RO architectures
in a Spartan 7 implementation. To assess portability, the GateVar architecture
was also employed for random bit generation on a SmartFusion2 platform. We
did not utilize the LUTVar architecture due to its inability, as demonstrated in
section 6.4, to reliably match the two ROs. All random bits were generated
without specific GP and LP constraints, using ROs with four configurable
stages for the Spartan 7 implementation and three configurable stages for the
SmartFusion2 implementation. Given a successful implementation of the GateVar
architecture on SmartFusion2, we do not explore the WireVar architecture on
this platform.

Both the Spartan 7 implementations (GateVar and WireVar) and the
SmartFusion2 implementation (GateVar) achieved configurations with average C
values falling within the shaded region, close to the maximum HTP: 60.6, 77.8,
and 107.9 respectively, resulting in throughputs of 4.65 Mbit s−1, 2.34 Mbit s−1,
and 1.47 Mbit s−1. According to [39], the Shannon entropy density per output
bit should exceed 0.997 bit. Converted to min-entropy, it should be higher than
0.91 bit per output bit. At measured oscillation frequencies of 271 MHz and
160 MHz, the obtained min-entropy values from the stochastic model are 0.92 bit,
0.99 bit, and 0.95 bit per output bit for the Spartan 7 (GateVar and WireVar)
and SmartFusion2 (GateVar) implementations, respectively. The bit streams
successfully passed test procedures B (T6 to T8) as described in AIS 31 [39],
using 120 Mbit of generated data, with estimated Shannon entropy densities
of 0.998 bit, 0.999 bit, and 0.997 bit per output bit based on the results of
test T8. Both implementations are thus PTG.3 compliant upon the addition
of cryptographic post-processing. We utilized CBC-MAC post-processing as
specified by the NIST SP 800-90B standard [83]. Post-processing reduced the
throughput by half, and all three bit streams passed the NIST SP 800-22 test
suite.

A comparison with previous COSO-ES designs and other ES implementations
compliant with the AIS 31 standard is presented in table 6.2. The results
from [63], where the GateVar RO was implemented on a Xilinx Spartan 6 FPGA,
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are included for reference. Compared to other designs, the ES proposed in this
chapter achieves a throughput exceeding 1 Mbit s−1 with a larger area footprint,
although still a lot smaller than the design presented in [95]. Notably, the ES
in this chapter incorporates an on-line testing module that alerts users when
sufficient matching cannot be achieved. This feature aligns with certification
requirements outlined in both standards [39, 83], and contributes to an increased
area usage compared to other designs.

A precise breakdown of the area requirements for the proposed ES design is
provided in table 6.3. The table presents both the absolute numbers of used
FFs/LUTs and their proportions relative to the total available FFs/LUTs in
the FPGA, for different number of stages, n.

The design effort is significantly reduced in this approach compared to previous
methods that typically involved Manual Placement (MP) and often Manual
Routing (MR). Such efforts needed to be repeated each time the design was
implemented on a different device, even within the same FPGA family.

For applications requiring higher throughput, techniques introduced in [85] can
be integrated with our proposed ES. These methods enhance throughput by a
factor of four. However, the stochastic model must be expanded to accurately
estimate the entropy density when employing mutual sampling.

6.6 Conclusion and Future Work

In this chapter, we introduced and evaluated three new RO topologies
for the COSO-ES, which significantly reduce the required design effort.
We experimentally validated the feasibility of the GateVar and WireVar
architectures, demonstrating that they consistently meet entropy requirements
derived from the stochastic model even when GP and LP constraints are
omitted or when the design is ported to a different FPGA family. This
characteristic makes the proposed ES highly suitable for integration into larger
cryptographic systems. Random bits were generated with maximum throughputs
of 4.65 Mbit s−1 on a Spartan 7 and 1.47 Mbit s−1 on a SmartFusion2 FPGA,
both passing the necessary statistical tests. Although the design requires a
modest area, it comes with a cost of increased latency when the controller
searches for an optimal configuration.
Note. The results presented in this chapter, particularly figs. 6.2 and 6.3, do
not account for dependencies on the previous ES state or output. Given the
insights from the research presented in part I, especially considering the presence
of flicker FM noise, the COSO-ES stochastic model must incorporate these
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Table 6.2: Comparison with related work.

Architecture FPGA family Area Throughput Design effort[FFs/LUTs] [Mbit s−1]

This work

Spartan 6(a)(b) 39/108(c) 3.30 -
SmartFusion2(a) 38/111(c) 1.47 -

Spartan 7(a) 62/82(d) 4.65 -
Spartan 7(e) 62/58(d) 2.34 -
Spartan 6 3/18 0.54 MP

Original COSO [70] Cyclone V 3/13 1.44 MP
SmartFusion2 3/23 0.328 MP

COSO: one bit per Actel Fusion AFS600 7/24(f) 2 MP & MR
half cycle [85] Spartan 3 7/18(f) 1.6 MP & MR
COSO: mutual Actel Fusion AFS600 14/29(f) 4 MP & MR
sampling [85] Spartan 3 14/23(f) 3.2 MP & MR
COSO: parameter Virtex-5 109 slices 4.08 MP & MRadjustment [95]

DC-ES [5] Spartan 6 128 slices 1.1 MP
Cyclone V 273 ALMs 1.116 MP & MR

PLL-ES [5] Spartan 6 190 slices(g) 1.0416 PLL required
Cyclone V 273 ALMs 1.04 PLL required

Edge sampling- Spartan 6 5/10 1.15 MP
ES [93] Cyclone V 6/10 1.067 MP

TERO-ES [70]
Spartan 6 12/39 0.625 MP & MR
Cyclone V 12/46 1 MP & MR

SmartFusion2 12/46 1 MP & MR

STR-ES [70]
Spartan 6 256/346 154 MP & MR
Cyclone V 256/352 245 MP & MR

SmartFusion2 256/350 188 MP & MR
(a) Using the GateVar RO architecture.
(b) Results reported in [63].
(c) Values calculated for three-stage ROs, controller hardware included.
(d) Values calculated for four-stage ROs, controller hardware included.
(e) Using the WireVar RO architecture.
(f) Values calculated using shown circuit diagram.
(g) Including embedded tests and data interface.
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Table 6.3: Detailed area breakdown.

Spartan 7 SmartFusion2
[FFs/LUTs] [%FFs/%LUTs] [FFs/LUTs] [%FFs/%LUTs]

Controller: 38/38(a) 0.058/0.073(a) 38/78(b) 0.137/0.282(b)

RO:
GateVar 0/4n + 2 0/0.035(c) 0/8n− 1 0/0.083(d)

WireVar 0/n + 2 0/0.012(c) 0/2n 0/0.022(d)

LUTVar 0/n + 2 0/0.012(c) 0/2n 0/0.022(d)

Digitization: 20/17 0.031/0.033 20/16 0.072/0.058
(a) Valid for a four stage GateVar or WireVar RO architecture.
(b) Valid for a three stage GateVar or WireVar RO architecture.
(c) Valid for four stages.
(d) Valid for three stages.

dependencies to accurately estimate the entropy density conditioned on previous
ES state information.

Future work will explore the applicability of this methodology to other ES designs
that demand significant design effort, optimize the controller’s search strategy
to reduce latency, examine the behavior of this ES under active manipulation
attacks, and update the stochastic model to include a wider range of noise
colors.
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Contribution: main author.

7.1 Background and Context

As discussed with great detail in section 2.2, validation of the correct functioning
of an ES must adhere to strict rules set by international standards on random
number generation [34, 39, 83]. This process is centered around the existence of
a stochastic model.

ES designs implemented on ASICs that are compatible with this workflow include
the TERO-ES, initially proposed by [86] and implemented in [96] (oscillator
jitter-based), a cross-coupled inverter pair ES, proposed and implemented by [54]
(metastability-based), and the STR-ES, first proposed by [12] and implemented
in [15] (oscillator jitter-based). Many of these designs, however, were initially
introduced for use on FPGA platforms and only later adopted by the circuit
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community for ASIC implementations. As these ESs originated from FPGA
implementations, they make only limited use of the extensive design flexibility
that the ASIC platform offers.

The designs presented in [15, 54, 96] represent a limited subset of ASIC
implementations available in the literature that follow the design procedures
mandated by international standards, as detailed in sections 2.3 and 2.4. Despite
the increasing availability of numerous high-performance ASIC ES designs, such
as those in [40, 81], which showcase innovative circuit techniques, many of these
ASIC-tailored designs lack a proper security evaluation. Specifically, they often
fail to specify a stochastic model or perform a profound theoretical entropy
assessment.

Following the modern approach to ES design, this chapter introduces an
ES architecture, explicitly constructed for use on an ASIC platform. The
contributions of the work presented in this chapter are as follows:

• A novel all-digital ES architecture based on the unpredictable timing jitter
in inverter DC ROs is proposed. The timing jitter is resolved by a TDC
using two free-running ROs, similar to the method in [43]. This all-digital
architecture offers two main advantages: it facilitates easy integration into
more complex digital systems and benefits from further CMOS scaling
without necessitating a complete circuit redesign.

• Reducing the TDC resolution and simultaneously accumulating indepen-
dent timing jitter (creating a jitter pipeline) decreases the required jitter
accumulation time, allowing for a throughput of several hundred megabits
per second. This throughput is significantly higher than previously
reported for oscillator jitter based ESs [15, 40, 42, 96, 97].

• A detailed stochastic model is provided, capable of estimating the
generated output entropy.

• Efforts were made to measure and estimate the magnitude of the linear
jitter strength platform parameter , a required input for the stochastic
model.

• A design parameter optimization strategy is provided to maximize the ES
throughput.

• The design is implemented in a 28 nm CMOS technology, and measurement
results are available.

This chapter is structured as follows: section 7.2 introduces the ES architecture,
including the principle of the jitter pipeline. A detailed mathematical description
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of the stochastic model for the proposed ES is available in section 7.3. Section 7.4
presents a rudimentary jitter measurement set-up and experimental jitter
measurement results, utilizing only the available on-chip ES hardware. An
optimization strategy for selecting optimal design parameters, such as the DC
jitter accumulation lengths or the TDC oscillation frequency, is detailed in
section 7.5. Experimental results showcasing the performance of the proposed
ES are presented in section 7.6. Finally, the chapter concludes with a comparison
to related work in section 7.7.

7.2 ES Architecture

This section provides a high-level overview of the ES architecture and jitter
pipeline principle. A more detailed mathematical analysis of the design follows
in section 7.3.

7.2.1 Jitter Pipeline

The proposed ES architecture is shown in fig. 7.1, which includes three main
components: a DC, a TDC and a digitization block. The DC and TDC each
consist of two ROs: DC0, DC1 and TDC0, TDC1, respectively. Timing jitter
naturally accumulates in all four ROs during a specified accumulation interval.
The TDC ROs resolve the timing jitter generated by the DC ROs with a
resolution determined by the period difference between the two TDC ROs. This
process produces a digital representation of the timing difference created by the
DC, which is then used to generate a random output bit.

To minimize idle time, the DC can begin accumulating jitter for the next output
bit during the resolvement phase of the current bit. During this resolvement
phase, timing jitter continues to accumulate since the TDC also contains free-
running ROs. Both phases provide independent contributions to the output
bit entropy, effectively creating a jitter pipeline. In this pipeline, jitter is first
generated in the DC stage and then handed over to the TDC stage for further
accumulation. This pipelining process is illustrated by the shaded boxes in
fig. 7.2.

The concept of jitter pipelining extends beyond the specific use of jitter
accumulation and resolvement with a DC and TDC structure as presented
in this chapter. It should be viewed as a broader principle that could be applied
to other ES architectures as well.
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Figure 7.1: ES architecture, containing the jitter pipeline.
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Figure 7.2: ES and jitter pipeline timing diagram.

7.2.2 Architecture Timing Description

A start edge is applied to both DC ROs, each implemented using a configurable
Exp4×4 topology, as detailed in section 5.3. The Edge To Level (E2L) blocks in
fig. 7.1 respond to the n-th positive edge generated by the DC ROs by disabling
them and outputting a positive edge (DC0 and DC1). The time it takes for the
start edge to propagate through the DC ROs for n cycles to the output of the
E2L block is denoted as T n

0 and T n
1 for DC0 and DC1, respectively, as shown in

the timing diagram in fig. 7.2. Random timing jitter variations make the timing
difference T n

∆ = T n
0 − T n

1 a random variable over multiple evaluations. The E2L
outputs (DC0 and DC1) then enable the TDC ROs to start oscillating (TDC0 and
TDC1).

Both TDC ROs use the configurable Lin2×8 topology and are set to have
slightly different oscillation periods, defining the TDC resolution as res =
|pT DC0 − pT DC1 |, with pw the average period for w ∈ {TDC0, TDC1}. The
ROs begin with an initial phase difference determined by T n

∆ and continue
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oscillating until the phase difference reaches either 0° or 180° (0 or π radians).
The digitization circuitry detects this phase synchronization when the bottom
RO (TDC1) starts sampling a different logic value from the top RO (TDC0) via
an XOR gate. A TFF then determines if TDC1 experienced an odd or an even
number of cycles during phase synchronization. The output of this TFF is used
as the random output bit.

7.3 Stochastic Model

This section provides a mathematical characterization of the circuit proposed
in section 7.2 and quantifies the entropy extracted from the available timing
jitter. The entropy estimation in this chapter is based solely on the presence
of unmanipulatable thermal noise. As demonstrated in chapter 3, other noise
sources will inevitably be present as well. Assuming thermal noise is independent
of all other noise sources, their coexistence will not reduce entropy. Therefore,
the estimation provided here inevitably represents a conservative lower bound.

For the notation and definitions of the probability concepts used throughout
this chapter, please refer to appendix A.

7.3.1 Model Assumptions

Following the reasoning in section 2.3.2, the stochastic model is based on four
main assumptions listed below:

• Thermal noise is unmanipulatable and independent of other noise sources.

• DC and TDC ROs are all mutually independent oscillators, affected by
thermal noise.

• RO phase affected by thermal noise behaves as a Wiener process with
drift.

• Linear jitter strength (defined in section 7.3.2) is small: snoise ≪ 1 s.

7.3.2 Description of a Noisy Oscillating Signal

Before diving into the intricate details of the stochastic model, it is constructive
to establish fundamental knowledge on timing jitter in free-running ROs.
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Noiseless Oscillator

The phase of an oscillating noiseless signal is a continuous linear function
through time t.

Definition 7.1. (Noiseless oscillator phase) The phase of a noiseless oscillator
is defined as φ : R→ R by φ(t) = µt + ϕ0, with µ defining the oscillation speed
or angular frequency and ϕ0 determining the phase at time zero.

The phase of an oscillator cannot be explicitly observed. Instead, we observe
an observable waveform e(φ) (current flow or node voltage), which is defined as
a function of the implicit phase. Examples of such waveforms include:

e(φ) = a sin(φ),

e(φ) =
{

a if φ mod 2π < π

0 if φ mod 2π ≥ π
,

e(φ) = a

2π (φ mod 2π),

representing sinusoidal, square and sawtooth waveforms respectively, with
amplitude a.

Definition 7.2. (Oscillator waveform) The waveform of an oscillator is a
composite function of time, defined as w : R → R ⊆ R by w(t) = (e ◦ φ)(t),
with R the range of the waveform function e.

Each of these waveforms has a period: pw = 2π
µ , meaning that ∀t ∈ R :

w(t+pw) = w(t). The waveform frequency is the inverse of the period: fw = µ
2π .

Noisy Oscillator

Assuming the influence of thermal noise alone, likewise to section 3.2.1, we
assume here that the phase of an oscillator subjected only to thermal noise,{

Φ(t)
}

t∈R≥0
, behaves as a Wiener process with drift.

Definition 7.3. (Noisy oscillator phase) The phase of an oscillator influenced
by thermal noise is a random process, defined as Φ : Ω× R≥0 → R by

Φ(ω, t) = µt + ϕ0 + σW (ω, t),

with ϕ0 again the phase at time zero, µ the drift and σ2 the infinitesimal
variance. {W (t)}t∈R≥0 represents a Wiener random process without drift.



STOCHASTIC MODEL 143

Figure 7.3: Example instances of a random phase process.

The oscillator is assumed to initiate at time zero, as the Wiener process is
not defined for negative time. The assumption is based on the description of
a Wiener process with drift, which models the integration of currents with
a thermal noise (white) component onto a load capacitor, as detailed by [1].
Example instances of this phase process are illustrated in fig. 7.3.
Note. As a Wiener process with drift is a special case of a Gaussian process, at
any moment in time ta ∈ R≥0, the value of the phase is normally distributed:

Φ(ta) ∼ N (µta + ϕ0, σ2ta).

Noisy RO

A square waveform with an amplitude of one, for the observable waveform
phase function, e(φ), is used to model an RO. The phase itself is modelled by a
Wiener process with drift and zero initial phase: ∀ω ∈ Ω,∀t ∈ R≥0 : Φ(ω, t) =
µt + σW (ω, t), as depicted in fig. 7.4.

The duration of the i-th half period is denoted by the random variable Xi.
Because of the independent increment property of the Wiener process, each half-
period duration of the RO output is Independent and Identically Distributed
(IID) compared to all other half periods, and can be represented by a single
random variable, X. This duration corresponds to the time it takes for the
oscillator phase to reach a multiple of π. Again, due to the independent
increment property, we focus solely on the time required to reach a phase
of π radians starting from phase zero. All other half periods have the same
distribution.
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X1X1X0X0 XiXi

Figure 7.4: RO waveform and corresponding phase versus time.

The time required for a Wiener process with drift to hit a certain level, α, for
the first time is inverse-Gaussian distributed: IG

(
α
µ ,
(

α
σ

)2
)

. The half-period
duration distribution is then given as

X ∼ IG
(
π

µ
,
(
π

σ

)2
)

.

From this, the expected value and variance for X can be calculated as E[X] = π

µ

and Var[X] = πσ2

µ3 . The jitter strength, controlling the rate at which linear
jitter accumulates in the RO is then equal to

snoise = Var[X]
E[X] =

(σ

µ

)2
, (7.1)

with units of time. In practical applications, this quantity typically ranges in
the order of femtoseconds [94].
Note. An assumption was made that if the drift µ is positive and the phase
starts at zero, it would not return and cross zero into negative values. However,
zero is also a multiple of π and will therefore produce an edge at the output
when crossed. This is because the inverse-Gaussian distribution only describes
the first passage time. For small values of drift relative to the infinitesimal
variance ( µ

σ ≪ 1 s−1/2), the phase could pass a certain level multiple times, with
each passage creating an edge at the output.

The assumptions will only hold true when µ
σ ≫ 1 s−1/2, which is typically the

case in most applications where snoise ≪ 1 s. The probability of the phase
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returning to its starting value and crossing it is equal to

P
[
Φ(t) ≤ 0

]
= Φs

(
−µ

σ

√
t
)

,

This probability diminishes rapidly over time when snoise ≪ 1 s. For very small
time instances (t ≈ (σ

µ )2 or lower), the assumption also does not hold, as the
RO output waveform cannot be considered as an ideal digital signal anymore.

7.3.3 DC Time Difference Distribution

The DC comprises two noisy free-running ROs, with the RO phase described as
a random process:

∀ω ∈ Ω,∀t ∈ R≥0 : ΦDC0(ω, t) = µDC0t + σDC0WDC0(ω, t),

∀ω ∈ Ω,∀t ∈ R≥0 : ΦDC1(ω, t) = µDC1t + σDC1WDC1(ω, t).

The DCs start at time zero with an initial phase equal to zero. Both DCs run
for a specified number of periods, n, triggering the E2Ls at times T n

0 and T n
1 ,

respectively:

ΦDC0(T n
0 ) = n2π,

ΦDC1(T n
1 ) = n2π.

The first passage time at level n2π of a Wiener process with drift is described
by the inverse-Gaussian distribution:

T n
0 ∼ IG

(
n2π

µDC0

,
( n2π

σDC0

)2
)

,

T n
1 ∼ IG

(
n2π

µDC1

,
( n2π

σDC1

)2
)

.

(7.2)

The DC time difference distribution, T n
∆, after n periods is given by

T n
∆ = T n

0 − T n
1 ,

which is defined by the subtraction of two independent random variables. Its
Cumulative Distribution Function (CDF) can be determined by integrating the
PDFs of T n

0 and T n
1 .

FT n
∆

(t) = P[T n
∆ ≤ t] = P[T n

0 ≤ t + T n
1 ]

=
{∫∞

0 fT n
1

(t1)
∫ t+t1

0 fT n
0

(t0) dt0 dt1 if t ∈ R≥0∫∞
0 fT n

0
(t0)

∫∞
t0−t

fT n
1

(t1) dt1 dt0 if t ∈ R<0
.

(7.3)
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The PDF for T n
∆ is then equal to

fT n
∆

(t) =
∂FT n

∆
(t)

∂t
. (7.4)

Note. In this model, T n
0 and T n

1 are assumed to be independent. Significant
effort was made in the design and layout of all four ROs to minimize coupling
by introducing separate supply networks and placing each RO in its own N-well.
If any dependency remains, it would lead to a reduced jitter strength estimate
in section 7.4 thus reducing the entropy claim made by this model.

7.3.4 TDC Run Time Distribution

The TDC oscillators begin oscillating once the respective DC has completed
n cycles (at times T n

0 and T n
1 , respectively). Each TDC is a free-running RO,

and their phases can be described by a random process, ∀ω ∈ Ω:

∀t ∈ R≥T n
0

: ΦT DC0(ω, t) = µT DC0(t− T n
0 ) + σT DC0WT DC0(ω, t− T n

0 ),

∀t ∈ R≥T n
1

: ΦT DC1(ω, t) = µT DC1(t− T n
1 ) + σT DC1WT DC1(ω, t− T n

1 ).
(7.5)

Note. Both T n
0 and T n

1 are random variables that follow the distributions given
in eq. (7.2). Consequently,

{
ΦT DC0(t)

}
t∈R≥T n

0
and

{
ΦT DC1(t)

}
t∈R≥T n

1
represent

random Wiener processes with drift and a random starting time instance.

TDC1 samples TDC0 using a DFF. Figure 7.5 illustrates the relation between
the TDC phases and the sampling time instances. The TDCs stop oscillating
whenever the sampled value (output of the DFF) toggles, and the number of
TDC1 periods is recorded. This toggling occurs whenever the two TDC phases
have diverged by more than π. The TDCs stop at the next positive edge of
TDC1. The TDC phase difference, Φ∆(t), is defined only for time instances after
the second TDC has started, ∀ω ∈ Ω,∀t ∈ R≥max(T n

0 ,T n
1 ):

Φ∆(ω, t) = ΦT DC0(ω, t)− ΦT DC1(ω, t)

= (µT DC0 − µT DC1)t + µT DC1T n
1 − µT DC0T n

0

+N
(
0, σ2

T DC0
(t− T n

0 ) + σ2
T DC1

(t− T n
1 )
)
.

(7.6)

Note. The notation ·+N
(
a, b2) in eq. (7.6) indicates the addition of a normally

distributed random variable X such that X ∼ N
(
a, b2). This normally

distributed variable arises from the properties of Wiener processes and the
addition of normal variables: aW (b) ∼ N

(
0, a2b

)
, for any b ∈ R≥0, and



STOCHASTIC MODEL 147

TDC0
TDC1

DFF

Figure 7.5: Relation between the TDC phases and the sampling time
instances. The middle graph shows two realizations of the TDC phase modulo
2π (ΦT DC0(ω, t) mod 2π and ΦT DC1(ω, t) mod 2π), the top graph shows the
corresponding realized TDC phase difference (ΦT DC0(ω, t)− ΦT DC1(ω, t)), and
the bottom graph shows the output waveforms for TDC0 (top), TDC1 (middle),
and the sampling DFF (bottom).

N
(
a, b2)−N (c, d2) ∼ N (a−c, b2+d2), for two independent normally distributed

random variables.

Now, three scenarios can be distinguished:

1. T n
∆ ∈ RRR>0 or T n

0 > T n
1 : The clocking TDC (TDC1) begins oscillating

first. A time shift is applied to Φ∆(ω, t), where t′ = t− T n
0 . Substituting

this into eq. (7.6) results in, ∀ω ∈ Ω,∀t′ ∈ R≥0:

Φ∆(ω, t′ + T n
0 ) = (µT DC0 − µT DC1)(t′ + T n

0 ) + µT DC1T n
1 − µT DC0T n

0

+N
(
0, σ2

T DC0
t′ + σ2

T DC1
(t′ + T n

0 − T n
1 )
)
.

This can be further simplified to, ∀ω ∈ Ω,∀t′ ∈ R≥0:

Φ∆(ω, t′ + T n
0 ) = (µT DC0 − µT DC1)t′ +

√
σ2

T DC0
+ σ2

T DC1
W ′

T DC(ω, t′)

− ΦT DC1(ω, T n
0 ).

(7.7)

Equation (7.7) demonstrates that the TDC phase difference, Φ∆(ω, t),
for t ∈ R≥T n

0
, can be expressed as a new Wiener process with drift:
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µ∆ = µT DC0 − µT DC1 , and infinitesimal variance: σ2
∆ = σ2

T DC0
+ σ2

T DC1
,

subtracted by the accumulated phase ΦT DC1(ω, T n
0 ) (from time T n

1 to
T n

0 ). This accumulated phase in TDC1 remains independent of the Wiener
process W ′

T DC(ω, t′), as this process only starts at time t′ = 0 or t = T n
0 .

Due to the properties of Wiener processes, phase accumulated over non-
overlapping time intervals is independent.

2. T n
∆ ∈ RRR<0 or T n

0 < T n
1 : The clocking TDC (TDC1) begins oscillating

last. The reasoning from the scenario T n
∆ ∈ R>0, can be repeated with a

time shift t′ = t− T n
1 . This will result in, ∀ω ∈ Ω,∀t′ ∈ R≥0:

Φ∆(ω, t′ + T n
1 ) = (µT DC0 − µT DC1)t′ +

√
σ2

T DC0
+ σ2

T DC1
W ′

T DC(ω, t′)

+ ΦT DC0(ω, T n
1 ).

Again, the phase accumulated in TDC0, ΦT DC0(ω, T n
1 ), from T n

0 to T n
1

remains independent of the Wiener process W ′
T DC(ω, t′), which starts at

time t′ = 0 or t = T n
1 .

3. T n
∆ = 0 or T n

0 = T n
1 : Both TDCs start oscillating simultaneously.

Note. This is a purely theoretical scenario, as T n
∆ follows a continuous

distribution, making the probability of this case effectively zero.

To be thorough, however, the TDC phase difference is now equal to (with
a time shift t′ = t− T n

0 = t− T n
1 ), ∀ω ∈ Ω,∀t′ ∈ R≥0:

Φ∆(ω, t′ + T n
0 ) = (µT DC0 − µT DC1)t′ +

√
σ2

T DC0
+ σ2

T DC1
W ′

T DC(ω, t′)

= Φ∆(ω, t′ + T n
1 ).

In this scenario, the subtraction involving the phase accumulated in one
of the TDCs disappears, as neither TDC had been running before the
second one starts.

The shifted TDC phase difference,
{

Φ′
∆(t)

}
t∈R≥0

, is now introduced:

∀ω ∈ Ω,∀t ∈ R≥0 : Φ′
∆(ω, t) = Φ∆

(
ω, t + max(T n

0 , T n
1 )
)
.

The TDC phase difference begins at a random variable, determined by the DC
time difference T n

∆:

Φ0
∆ = Φ′

∆(0) =


−ΦT DC1(T n

0 ) if T n
∆ ∈ R>0

ΦT DC0(T n
1 ) if T n

∆ ∈ R<0

0 if T n
∆ = 0

. (7.8)
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From the random process description in eq. (7.5), Φ0
∆ conditioned on a realization

t of T n
∆, is distributed as

Φ0
∆ | T n

∆ = t ∼


N
(
−µT DC1t, σ2

T DC1
t
)

if t ∈ R>0

N
(
−µT DC0t,−σ2

T DC0
t
)

if t ∈ R<0

0 if t = 0
, (7.9)

The TDC phase difference
{

Φ′
∆(t)

}
t∈R≥0

will behave as a Wiener process with
drift, added to this initial phase difference. The TDCs will cease oscillating
when Φ′

∆(ω, t) first crosses a multiple of π at a random time Tπ:

Tπ : Ω→ R≥0 by Tπ(ω) = min
t∈R≥0

(
t | Φ′

∆(ω, t) = mπ and m ∈ Z
)
.

An example phase instance of the two TDCs is illustrated in fig. 7.6.

Because our focus is solely on the first passage time of Φ′
∆(ω, t) at a multiple of

π, the initial phase difference can be reduced modulo π:

∀ω ∈ Ω,∀t ∈ R≥0 : Φ̄′
∆(ω, t) =

(
Φ′

∆(ω, t)− Φ0
∆
)

+ Φ0
∆ mod π.

Both Φ̄′
∆(ω, t) and Φ′

∆(ω, t) reach their first passage times at a multiple of π
simultaneously: Tπ.
Note. For the reduced phase difference

{
Φ̄′

∆(t)
}

t∈R≥0
, the first passage level at

a multiple of π will be either zero or π: Φ̄′
∆(Tπ) = 0 or π.

Depending on the sign of the phase drift difference µ∆,
{

Φ̄′
∆(t)

}
t∈R≥0

will drift
towards one of the two boundaries when µ∆ ∈ R>0 or µ∆ ∈ R<0, as depicted
in fig. 7.6. If initiated near the opposite boundary (either 0 for µ∆ ∈ R>0 or
π for µ∆ ∈ R<0), the phase difference may reach this boundary prematurely,
ending the oscillations.

We can now establish the CDF for Tπ, conditioned on a realization φ of Φ0
∆:

FTπ|Φ0
∆

(t | φ) = P
[
Tπ ≤ t | Φ0

∆ = φ
]

= 1−P
[
Tπ > t | Φ0

∆ = φ
]

=
{

1−P
[
0 < Φ̄′

∆(t) ≤ π | Φ0
∆ = φ

]
if t ∈ R≥0

0 otherwise
.

(7.10)

The condition for the oscillations to continue can be expressed more explicitly
as

0 < µ∆t + σ∆W ′
T DC(t) + φ mod π ≤ π.
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TDC1

DFF

TDC0

TDC1

DFF

Figure 7.6: Relation between the TDC phases and the sampling time instances
for µ∆ ∈ R>0 (top) and µ∆ ∈ R<0 (bottom).

Moving all deterministic components to the outside to obtain

−µ∆t + φ mod π
σ∆

< W ′
T DC(t) ≤ π− µ∆t− φ mod π

σ∆
. (7.11)

From the property of Wiener processes, W (a) ∼
√

aN (0, 1), we can rewrite the
boundaries from eq. (7.11) as

−µ∆t + φ mod π
σ∆
√

t
< X ≤ π− µ∆t− φ mod π

σ∆
√

t
, (7.12)
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Figure 7.7: Lower and upper boundaries versus time (t) from eq. (7.12), for
different µ∆, σ∆, and Φ0

∆ = φ.

with X ∼ N (0, 1) (standard normal distributed). Substituting this result into
eq. (7.10) gives

FTπ|Φ0
∆

(t | φ) =


1− Φs

(
π− µ∆t− φ mod π

σ∆
√

t

)
+ Φs

(
−µ∆t + φ mod π

σ∆
√

t

) if t ∈ R≥0

0 otherwise

.

Figure 7.7 illustrates the evolution of these boundaries over time for different drift
difference µ∆, infinitesimal difference variance σ∆, and initial phase difference
condition Φ0

∆ = φ. The conditional PDF for Tπ can then be derived by
differentiating the CDF.

7.3.5 Output Bit Probability Distribution

The TDCs cease oscillating at the first positive edge of TDC1 after time Tπ. The
number of cycles of TDC1 up to this point, denoted as the random variable R,
will then be used to construct the output random bit. This number of completed
cycles is equal to

R : Ω→ Z by R(ω) =
⌈ΦT DC1

(
ω, Tπ + max(T n

0 , T n
1 )
)

2π

⌉
. (7.13)
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Figure 7.8: Histogram of 1000 repeated simulations illustrating the absolute
phase error in ΦT DC1(ω, t) when employing the simplified relation in eq. (7.14).
Typically, this phase error is corrected by applying the ceil operation. The
simulations were conducted assuming a linear jitter strength of snoise = 30 fs.

The term max(T n
0 , T n

1 ) is added to Tπ, as Tπ was defined for the shifted phase
difference. This term accounts for the accumulated phase in the scenario TDC1
was started first.
Note. The range of the random cycle count, R, includes negative values.
However, for practical jitter strengths where snoise ≪ 1 s, the probability
of R being negative is negligible, and the range effectively covers only positive
counts: R : Ω→ N.
Note. There exists a dependency between Tπ and the Wiener process
determining

{
ΦT DC1(t)

}
t∈R≥T n

1
, complicating the derivation of an analytical

expression for the distribution of R. To address this, the noise contributing
to
{

ΦT DC1(t)
}

t∈R≥T n
1

is neglected: ΦT DC1(ω, t) ≈ µT DC1(t − T n
1 ). This

simplification is justified because the jitter strength in the phase difference signal
is significantly greater than in a single TDC: σ∆

µ∆
≫ σT DC1

µT DC1
. This condition

holds well for closely matched TDCs: µT DC0 ≈ µT DC1 and |µ∆| ≪ µT DC1 .

Simulation results depicted in fig. 7.8 provide additional validation for the
simplification, as the introduced error in the phase process ΦT DC1(ω, t) is
minimal. The relative error (average deviation for R) is 0.2 %.

Using this simplification, eq. (7.13) can be rewritten as

R =
⌈

µT DC1

(
Tπ + max(T n

0 , T n
1 )− T n

1
)

2π

⌉
. (7.14)
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Depending on the sign of T n
∆, we have

R =


⌈

µT DC1 (Tπ+T n
∆)

2π

⌉
if T n

∆ ∈ R>0⌈
µT DC1 Tπ

2π

⌉
if T n

∆ ∈ R≤0
.

The term µT DC1T n
∆ can be more accurately replaced by −Φ0

∆ for T n
∆ ∈ R>0

from eq. (7.8), as this term represents the accumulated phase in TDC1 before
TDC0 was started. The conditional CDF for R can now be calculated as, ∀r ∈ N:

FR|Φ0
∆,T n

∆
(r | φ, t) = P

[
R ≤ r | Φ0

∆ = φ, T n
∆ = t

]
=

P
[
Tπ ≤ 2πr+φ

µT DC1
| Φ0

∆ = φ
]

if t ∈ R>0

P
[
Tπ ≤ 2πr

µT DC1
| Φ0

∆ = φ
]

if t ∈ R≤0
.

R is a discrete random variable, ∀r ∈ N:

fR|Φ0
∆,T n

∆
(r | φ, t) = P

[
R = r | Φ0

∆ = φ, T n
∆ = t

]
=
{

FR|Φ0
∆,T n

∆
(r | φ, t)− FR|Φ0

∆,T n
∆

(r − 1 | φ, t) if r ∈ N ̸=0

FR|Φ0
∆,T n

∆
(0 | φ, t) if r = 0

.

Removing the conditionals, to obtain the joint distribution:

fR,Φ0
∆,T n

∆
(r, φ, t) = fR|Φ0

∆,T n
∆

(r | φ, t)fΦ0
∆|T n

∆
(φ | t)fT n

∆
(t),

with fT n
∆

(t) and fΦ0
∆|T n

∆
(φ | t) obtained from eqs. (7.4) and (7.9), respectively.

The random variables Φ0
∆ and T n

∆ are integrated out to obtain the distribution
for R:

fR(r) =
∫ ∞

−∞

∫ ∞

−∞
fR,Φ0

∆,T n
∆

(r, φ, t)dtdφ.

The produced random bit, B, is now defined as the LSB of R. Therefore, the
bit probability can be calculated as

∀b ∈ {0, 1} : P[B = b] =
∞∑

i=0
fR(2i + b).

Because the system does not retain a state between bit generations, individual
bits are inherently IID, assuming that thermal noise is the sole source of RO
jitter.
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7.4 Jitter Strength Measurement

The entropy estimate provided by the model in section 7.3 is significantly
influenced by the platform-dependent parameter known as jitter strength
(snoise). This parameter dictates the rate at which timing jitter accumulates in
a free-running RO. Unlike design parameters (e.g., RO frequency), the jitter
strength cannot be directly measured or controlled. As proposed by [94], jitter
measurements should be conducted on-chip and preferably with a differential
measurement set-up to minimize external (potentially manipulable) influences
that might lead to an overestimation of the available timing jitter.

It is crucial not to overestimate the jitter strength parameter and to use a
conservative method for two key reasons. Firstly, measurement errors, such as
external noise sources other than thermal noise, will always introduce a positive
bias. This happens because the jitter strength is determined based on observed
measurement variance, and any external, independent sources of error will
increase this variance (adding two independent random variables will increase
variance), leading to overestimation. Secondly, the estimated output entropy
forms the basis of a security claim. Overestimating the jitter strength results in
an overestimation of the produced output entropy, potentially invalidating the
security claim.

To ensure accuracy, the jitter measurement experiment was repeated on five
separate devices (chips). The most conservative estimate from these tests will
be used to estimate the entropy for all devices.

7.4.1 On-chip Measurement Set-up

The proposed ES architecture in section 7.2 also supports on-chip differential
jitter strength measurement. A circuit diagram and timing diagram for this
measurement are shown in figs. 7.9 and 7.10. By configuring TDC0 and TDC1
to have long and short oscillation periods respectively (pT DC0 > 2pT DC1), a
positive edge of TDC1 will occur each half-period of TDC0. Each half-period
of TDC0 is sampled, causing the TDCs to stop oscillating once both DCs have
finished propagating. DC0 and DC1 are configured so that DC1 has a shorter
propagation delay than DC0 (T n

0 > T n
1 ). Thus, TDC1 oscillates during the

interval when DC1 has finished propagating but DC0 has not. A counter records
the number of TDC1 oscillations during this interval, producing an output
proportional to the propagation delay difference between DC0 and DC1. By
analyzing the counter output variance over multiple evaluations, an estimation
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Figure 7.9: Jitter measurement circuit architecture.
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Figure 7.10: Jitter measurement timing diagram.

of the differential DC propagation variance, and therefore the available jitter
strength in DC0 and DC1, is obtained.

7.4.2 Theoretical Jitter Analysis

Based on the stochastic model from section 7.3, an estimate for the observed
counter output variance can be made dependent on the jitter strength value,
snoise. In this chapter, we select the highest value for snoise that still results
in an underestimation of the observed variance, using this as the final jitter
strength estimate. The timing jitter accumulated by TDC1 also impacts the
counter output variance. Therefore, the model from section 7.3 is extended here
to estimate the counter output variance accurately.

The DC timing difference distribution, T n
∆, is given by eq. (7.3). Due to a

hardware constraint, the TDCs are only permitted to stop oscillating after both
have completed two full periods. Consequently, the jitter accumulation time
interval is given by

T n
A = T n

∆ + T2T DC0 ,

where T2T DC0 is a random variable representing the time required for TDC0
to oscillate for two full periods. According to section 7.3, T2T DC0 follows an
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inverse-Gaussian distribution:

T2T DC0 ∼ IG
(

4π
µT DC0

,
( 4π

σT DC0

)2
)

.

During the accumulation time interval T n
A, TDC1 will oscillate. Assuming it

starts with zero phase, the phase of TDC1 at the end of this interval, denoted
as ΦJ , conditioned on the length of the accumulation time interval, follows a
Gaussian distribution:

∀ta ∈ R≥0 : (ΦJ | T n
A = ta) = ΦT DC1(ta) ∼ N

(
µT DC1ta, σ2

T DC1
ta

)
.

The condition to the accumulation time interval length can be removed in a
manner similar to what was done in section 7.3:

fΦJ
(φ) =

∫ ∞

0

1
σT DC1

√
ta

ϕs

(φ− µT DC1ta

σT DC1

√
ta

)
fT n

A
(ta)dta.

The TDC oscillations will only stop after a positive edge occurs in TDC1.
Consequently, all phases of TDC1 within the interval

(
2π(r − 1), 2πr

]
will result

in the same counter output: r. The probability of the counter output R being
equal to a value r (PMF) is then given by

∀r ∈ N ̸=0 : fR(r) = P[R = r] =
∫ 2πr

2π(r−1)
fΦJ

(φ)dφ.

From this result, the variance Var[R] can be calculated and compared with the
measured values.

7.4.3 Measurement Results

Figure 7.11 presents the jitter measurement results for five different devices. The
experiment was conducted with four different DC accumulation time differences,
T n

∆, determined by the parameter: n ∈ {1, 2, 4, 8}. For each device, 100 sets of
216 counter outputs were collected. The counter output variance, Var[R], was
calculated from the 216 samples. Each device at each value of n is represented
as a box plot, showing the experimental distribution for Var[T n

0 ], derived from
measuring Var[R] and using the model from section 7.4.2, over the 100 repeated
measurements. The straight lines in fig. 7.11 represent the theoretical DC0
period length variance, Var[T n

0 ], for different jitter strength magnitudes, snoise,
calculated as: Var[T n

0 ] = snoiseE[T n
0 ]. A conservative estimate of 30 fs was

obtained.



DESIGN PARAMETER SELECTION CRITERIA 157

Figure 7.11: Jitter measurement results.

7.5 Design Parameter Selection Criteria

The proposed ES design features four design parameters that can be freely
chosen by the designer: µDC0 , µDC1 , µT DC0 , and µT DC1 . The infinitesimal
variances (σw for w ∈ {DC0, DC1, TDC0, TDC1}) are linked to the phase drifts
by the determined jitter strength and eq. (7.1). Following the strategy outlined
in section 2.4.2 in chapter 2, this section provides a selection strategy for these
four design parameters.

7.5.1 Pipeline Balance

As with all pipelined architectures, it is necessary to balance the propagation
times for both stages. The average propagation delay of the DC stage is given
by:

dDC = max
(
E[T n

0 ], E[T n
1 ]
)
.

The slowest DC will dictate when the TDCs can begin resolving the timing
difference. The maximal TDC resolving time is determined by the TDC
resolution (res), which is defined as

res = |pT DC0 − pT DC1 | =
∣∣∣∣ 2π
µT DC0

− 2π
µT DC1

∣∣∣∣.
Each period of TDC0, the positive edge of TDC1 shifts by an amount of res
relative to the positive edge of TDC0. The TDCs will stop oscillating as soon
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as TDC1 samples a different value from TDC0. This implies that at most pT DC0
2res

cycles of TDC1 are required. The maximal TDC resolving time is then given as

dT DC = pT DC0pT DC1

2res
.

To ensure the TDCs finish resolving before the DCs have accumulated enough
jitter for the next output bit, the TDC resolving time must be shorter than the
maximal DC propagation delay: dT DC < dDC . This constraint sets an upper
limit on the TDC resolution:

res >
pT DC0pT DC1

2 max
(
E[T n

0 ], E[T n
1 ]
) . (7.15)

7.5.2 Entropy Density

According to [39], a minimum Shannon entropy density of 0.997 bit per output
bit is required, when no additional post-processing is added. The stochastic
model from section 7.3 is used to determine the theoretical entropy density
at the output. Linear timing jitter, originating from thermal (white) FM
noise, accumulates proportionally to the square root of the accumulation time
(addition of independent variances). A maximum TDC resolution size is needed
to extract the required entropy from the accumulated DC timing jitter. This
requirement leads to an upper bound on the TDC resolution, given as

res < α
√

snoise max
(
E[T n

0 ], E[T n
1 ]
)
, (7.16)

with the constant α related to the required entropy density and the shape of
the accumulated timing jitter distribution. The value of α can be determined
by evaluating the model from section 7.3 for various DC accumulation times
and identifying the upper bound on the required resolution.

Figure 7.12 presents the model results. It is evident that the obtained value
of α is not perfectly constant. To ensure that eq. (7.16) consistently produces
a valid upper bound for the TDC resolution, a lower bound (indicated by the
horizontal line in fig. 7.12) is selected. The value of α used throughout this
chapter equals 1.94.

7.5.3 ES Throughput

The ES throughput is related to the DC accumulation time:

throughput = 1
max

(
E[T n

0 ], E[T n
1 ]
) .
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Figure 7.12: Minimal α required for eq. (7.16) to produce a high enough entropy
density, with snoise = 30 fs.

1

2

Optimal
region
Optimal
region

Optimal max DC delay

Op
ti
ma
l

Figure 7.13: TDC resolution versus DC accumulation time optimization.

A sketch illustrating both constraints for the TDC resolution versus the DC
accumulation time is shown in fig. 7.13. The top curve (1) and bottom curve
(2) represent eqs. (7.16) and (7.15), respectively. Valid values for the TDC
resolution are indicated by the shaded region between the two constraint curves.
Higher ES throughput favors points more to the left of the graph. The optimal
resolution/accumulation time point is at the intersection of both constraint
curves. To ensure a sufficiently stable ES implementation, a margin from the
constraint borders is necessary, which is indicated by the optimal region in
fig. 7.13.



160 CONFIGURABLE TRNGS FOR ASICS

DC stage

8

1

16

4

CONF[2]

CONF[3]

CONF[1]

CONF[0]

2
IN

DC stage DC stage DC stage

OUT

CO
NF
[4
:7
]

CO
NF
[1
2:
15
]

CO
NF
[8
:1
1]

DC

TDC stage

TDC stage

1

1

CONF[1]

CONF[0]

1

1

CONF[7]
CO
NF
[8
:1
5]

OUT

8

TDC

IN

Figure 7.14: Detailed DC/TDC architecture.

7.5.4 Delay Control Circuit

To optimize throughput, a precise control over the DC accumulation time
(E[T n

0 ] and E[T n
1 ]) and the TDC resolution is essential. The DC and TDC

implementation leverage the Exp4×4 and Lin2×8 RO topologies, respectively,
introduced in section 5.3. Figure 7.14 illustrates the circuit breakdown, including
the CSI sizing, for both the DC and TDC ROs.

Both DC and TDC ROs feature 16 configuration bits each, controlled by
an off-chip controller circuit. With the architecture depicted in fig. 7.14, a
configuration within the optimal region was consistently achievable across all
tested devices.

7.6 Experimental Results

Five devices with the proposed ES architecture were fabricated using a 28 nm
CMOS technology. All measurements are conducted under standard conditions:
20 °C ambient temperature and 0.9 V supply voltage unless specified otherwise.
Each device’s DC and TDC ROs were configured to operate within the optimal
region, as detailed in section 7.5. This involved scanning through various DC
and TDC RO frequencies to select the most suitable combination for each
device.
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Figure 7.15: Measured sample correlation for 4096 samples, obtained from
chip 0.

7.6.1 IID Claim Verification

As stated in section 7.3.5, the output bits are inherently IID under the
assumption that only thermal FM noise affects the DC and TDC ROs. To
validate this assertion, two experiments were conducted: a correlation analysis
of the generated counter values (R) and the NIST SP 800-90B IID test [83].

Correlation Analysis The sample correlation coefficient of 4096 consecutively
generated counter samples (realizations of R) from chip 0 is computed for sample
lags ranging from 1 to 1024. The sample correlation coefficient is calculated
using the formula:

correlation(lag) =
∑3072

i=1 (ri − r̄)(ri+lag − r̄)√∑3072
i=1 (ri − r̄)2∑3072

i=1 (ri+lag − r̄)2
,

with ri the i-th generated sample and r̄ the sample mean. The results depicted
in fig. 7.15 show no significant sample correlation, which further supports the
assumption that the generated samples are IID.

NIST SP 800-90B IID Test All five devices successfully pass the NIST SP 800-
90B IID test, using 1 Mbit of consecutively generated bits.
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Table 7.1: Min-entropy estimates, smallest value in bold.

Chip Model Test
[bit] [bit]

0 0.999 88 0.933 41
1 0.998 61 0.944 75
2 0.998 11 0.947 22
3 0.998 95 0.952 55
4 0.999 63 0.962 21

7.6.2 Entropy Validation

As imposed by [39], the estimated min-entropy should be greater than 0.91 bit
per output bit (equivalent to 0.997 bit of Shannon entropy), when no further
post-processing is utilized. In section 7.5, the ES design parameters were chosen
to achieve at least 0.91 bit of min-entropy per output bit, with higher entropy
achievable at the expense of a reduced throughput. Table 7.1 provides an
overview of the min-entropy estimates for all five tested devices, based on
1 Mbit of consecutive data collected under nominal conditions. Each device
meets the required min-entropy level. The entropy estimate derived from the
NIST SP 800-90B test, also using 1 Mbit of data, is more conservative compared
to the stochastic model estimate, which aligns with the tendency of these tests
to underestimate the available entropy [75]. The counter output R serves as a
health metric, indicating a potential entropy reduction.

7.6.3 Power and Throughput

All five devices tested achieve a throughput exceeding 250 Mbit s−1 under
nominal conditions, as illustrated in the left graph of fig. 7.16. Process variations
in the DC/TDC ROs can cause performance differences among devices. One
device (chip 1) was extensively tested across various voltage conditions. The
experimental results, shown in the middle graph of fig. 7.16, indicate that for all
tested supply voltage levels, the output bit entropy remained above the 0.91 bit
threshold per output bit.

The right graph in fig. 7.16 displays the power consumption breakdown and
energy efficiency per generated bit. The best energy efficiency is achieved at a
0.8 V supply, with 1.46 pJ bit−1, which is lower than previously reported. The
power breakdown reveals that at nominal conditions, the Core, DC, and TDC
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Figure 7.16: Measurement results.

consume 54.2 %, 8.2 %, and 37.6 % of the total power, respectively. The Core
module includes the digitization and synchronization circuitry.

7.7 Conclusion and Comparison

7.7.1 Comparison

Compared to previous work listed in table 7.2, the proposed design achieves
the best energy efficiency and the second-best area efficiency (throughput
generated per unit of normalized area). The jitter pipelining architecture,
combined with high TDC time resolution, allows for high throughput with
modest area and power requirements. A chip photo is shown in fig. 7.17. The
ES circuitry, comprising the DC, TDC, and Core, occupies 750.7 µm2. Additional
configuration FFs, to store the DC/TDC configuration (Conf), and interfacing
logic (Send) are included for device measurement.

7.7.2 Conclusion

The proposed ES architecture was designed and verified using an approach
aligned with modern standards. Leveraging the digital nature of the circuits
used, this design benefits from the advantages of digital CMOS, such as scaling
and integration. A stochastic model is introduced to estimate the output bit
entropy, along with an on-chip jitter measurement methodology to quantify the
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Table 7.2: Comparison with previous work.

This ISSCC ISSCC JSSC JSSC Cryptogr.

work 2021 2017 2016 2012 2021
[81] [40] [96] [54] [42]

Technology [nm] 28 28 65 40 45 65

Entropy source Edge SRAM Edge Edge Meta- Edge
jitter leakage jitter jitter stability jitterjitter

Stochastic model
available

All digital
Area [kF2] 957.5 36(a) 218 522.5 1977 59.2
Max throughput 298 3.6 9.9 2 8.27[Mbit s−1] 2400

Best energy 9.6 35.5 11 2.9 128.2efficiency [pJ bit−1] 1.46

Best area 311.2 100 45.4 3.83 139.7efficiency [bit s−1 F−2] 1214

Supply voltage 0.8 - 1.0 0.8 - 1.0 1.08 - 1.2 0.6 - 0.9 0.28 - 1.35 -range [V]
(a) SRAM area not included

Send

ASIC
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Co
n
f
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DC1

TDC0

TDC1
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19
.6

 
µm

19
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µm

38.3 µm38.3 µm

Figure 7.17: Chip photo with zoomed in region on the ES area.

jitter strength platform parameter. An optimization scheme guides the selection
of design parameters, ensuring maximal throughput for the given platform
parameters. The jitter pipelining structure enables efficient on-chip entropy
generation in terms of both area and energy usage.



Chapter 8

Conclusion

The final chapter of this dissertation summarizes the key contributions presented
in this work and discusses the implications of the obtained results. Additionally,
it provides directional suggestions for further research in this field.

8.1 Overview of Contributions

For a detailed summary of the contributions presented in the different chapters,
please refer to the conclusion section of each respective chapter. This section
instead highlights several global research trends in the field of TRNG design
and explains how this dissertation has contributed to these trends.

Trend 1: Increased Awareness of Other Oscillator Noise Types The
noticeable increase in the rate of publications [7, 8, 18] addressing oscillator
noise types other than the established thermal FM noise, mainly flicker FM
noise, highlights the growing importance of this topic in the TRNG and ES
design community. To the best of our knowledge, the work presented in part I
of this dissertation is the first to analyze and describe the influence of noise
sources other than thermal FM noise on an ASIC platform in a TRNG context.
This new description of flicker FM noise enables a more profound analysis of
the different ways in which entropy gets generated in oscillator-based ESs.

Trend 2: Reduced Design Effort The days of designers endlessly tinkering
with the ES implementation for only marginal performance gains are now
behind us. Additionally, these same ESs were often very susceptible to changing
operating conditions, rapidly degrading with changes in supply voltage [11] or
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surrounding temperature [79]. By introducing a configurable approach, the work
presented in part II of this dissertation allows for the construction of modern
ESs that provide increased robustness against environmental changes while
simultaneously reducing the design effort required for correct implementation.

Trend 3: Increased Performance, While Adhering to Standards Recently
published ES designs [24, 42] continue to push the performance boundaries, while
simultaneously remaining compatible with international standards on TRNG
design. Mainly two figures of merit are distinguished in this thesis: generated
entropy rate per required area unit, and produced entropy per required unit of
energy. Certainly, depending on the application, individual metrics such as: area
usage, power consumption, or throughput can be the main topic of optimization
as well. The work presented in chapter 7 contributes to this trend by proposing
an ES architecture, achieving the highest (at the time of publishing) energy
efficiency, and additionally providing a detailed stochastic model description.

8.2 Further Research Pathways

For each of the trends indicated in the previous section, some potential directions
for further research are provided.

Trend 1: Increased Awareness of Other Oscillator Noise Types Looking
ahead, a more in-depth analysis of the stopping times for oscillator phase
processes (the time required for the phase to hit a certain level), particularly
under the influence of noise types beyond thermal FM noise, will be crucial
for providing a detailed description of the distribution and dependency of
consecutive oscillator period lengths. Additionally, the flicker FM noise analysis
should be extended across a wider range of ES architectures. For example, for
the STR-ES [13], we can validly question whether assumptions of independence
for all individual events still hold true.

Moreover, despite existing measurements of the flicker FM noise magnitude [8,
21, 27, 46], the wide variation in reported values necessitates further investigation.
Gathering a larger number of measurements across diverse hardware platforms
will be essential to fully comprehend the behavior of flicker FM noise and its
suitability for entropy generation.

Trend 2: Reduced Design Effort The results presented in chapter 6
demonstrated that using configurable RO topologies, the ES can be fully
described using an HDL alone, significantly reducing the design effort required
on the FPGA platform. The question now arises if the same principle is possible
on an ASIC hardware platform as well. Advancing further in the direction of
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reducing design effort, the development of a first standard-cell ASIC ES design
should not be far off. Additionally, further attention can be given to applying
the proposed techniques of RO configurability to non-oscillator-based ESs, such
as an inverter metastability-based design [87], as well.

Trend 3: Increased Performance, While Adhering to Standards The trend
of chasing after ever-increasing TRNG performance will continue to motivate
engineers to publish novel architectures and concepts, especially within more
circuit-oriented communities. While this trend is to be encouraged, safeguards
should remain in place to prevent this pursuit of performance gains from leading
to unintended side effects:

• Ensure that the continuous pursuit of performance gains does not result
in needlessly complex topologies, which are hard to analyze and could
significantly increase the design effort.

• Ensure that future proposed designs consider resistance to PVT variations
from the design phase, in addition to performance.

• Ensure that no severe compromises affecting the security of the proposed
designs are made in exchange for performance gains.

While history has proven numerous times that expecting no future TRNG design
to wander outside these safeguards is almost foolish, we can find reassurance in
the guiding influence of international standardization bodies today, steering the
trajectory of TRNG design toward a promising future.





Appendix A

Mathematical Framework

This appendix offers essential mathematical background knowledge. Most of
the concepts introduced here are extensively covered in [36]. The notation has
been slightly adapted to accommodate the requirements of this thesis.

A.1 Notation and Definitions

A.1.1 Notation

Table A.1 displays the notation for the mathematical objects utilized in this
thesis. Both Latin and Greek symbols are used interchangeably. When the
dimension of an object is not specified, scalar notation is employed. Sets are
denoted by capital symbols, and within the given context, there should be no
potential confusion with the notation for random variables.

The notation: R≥a, signifies the subset of real numbers greater than or equal
to a: {x ∈ R | x ≥ a}. Similarly, this notation is applied to the relations: >, ≤,
<, and ̸= as well, as to the sets of integers, Z, and natural numbers, N. A finite
range of integers is denoted as Nn = {i ∈ N | i < n} = {0, 1, . . . , n − 1}. The
Cartesian power of a set is represented as follows:×n−1

i=0 S = Sn and the power
set, 2S , equals the set containing all subsets of S, including the empty set, ∅, and
S itself. A random variable, A, distributed according to some parameterized
distribution, D(p0, p1, . . . pn) is denoted as A ∼ D(p0, p1, . . . , pn). The operator
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Table A.1: Notation of mathematical objects.

Deterministic Random
Scalar a A

Vector a⃗ A⃗
Matrix A A
Matrix element Ai,j Ai,j

Function a(t)
{

A(t)
}

t∈T

Measurement â Â

· mod a, is shorthand notation for · −
⌊

·
a

⌋
a, or the positive remainder after

division by a.

A.1.2 Elementary Functions

This subsection defines elementary functions and operators used in this thesis.

Indicator Function

The set indicator function assigns a zero, one to elements that are not in, are in
a given subset.

Definition A.1. (Indicator function) Given a set and subset: S ⊆ T , the
indicator function, 1S : T → {0, 1}, is defined as

∀t ∈ T : 1S(t) =
{

1 if t ∈ S

0 if t /∈ S
.

Window Function

The window function only equals one in an interval of length ∆.

Definition A.2. (Window function) The window function on the real line:
w∆ : R→ {0, 1

2 , 1}, is defined as

∀t ∈ R : w∆(t) =


1 if |t| ∈ R< ∆

2
1
2 if |t| = ∆

2
0 otherwise

.
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Cosine Integral

The cosine integral is used to model an oscillator influenced by flicker Frequency
Modulated (FM) noise throughout this thesis.

Definition A.3. (Cosine integral) The cosine integral function, Ci : R>0 → R,
is defined as

∀x ∈ R>0 : Ci(x) = −
∫ ∞

x

cos(θ)
θ

dθ.

We have the following property: limx→∞ Ci(x) = 0 and the Taylor expansion
of Ci(x) around x = 0 is given as [88]:

Ci(x) = γ+ ln(x) +
∞∑

k=1

(
−x2)k

2k(2k)! ,

with γ ≈ 0.577 representing the Euler-Mascheroni constant.

Fourier Transform

The Fourier Transform (FT) of a scalar function breaks down the function into
its frequency composition.

Definition A.4. (FT) The FT of a scalar function, a : R→ C, results into a
different scalar function, c(f) = F

{
a(t)

}
: R→ C, defined as

∀f ∈ R : c(f) = F
{

a(t)
}

=
∫ ∞

−∞
a(t)e−j2πftdt,

with j the imaginary unit.

The inverse FT is similarly defined.

Definition A.5. (Inverse FT) The inverse FT of a scalar function, c : R→ C,
results into a different scalar function, a(t) = F−1{c(f)

}
: R→ C, defined as

∀t ∈ R : a(t) = F−1{c(f)
}

=
∫ ∞

−∞
c(f)ej2πtf df.

It can be shown that for a continuous function, a: F−1
{
F
{

a(t)
}}

= a(t), when
a and F{a} are absolutely integrable. The functions, a(t) and c(f) = F

{
a(t)

}
form a FT pair.
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A.2 Fundamentals of Probability Mathematics

This section offers prerequisite knowledge on probability mathematics and
measure theory.

A.2.1 Probability Space

A probability space provides a framework for managing real-world scenarios
where outcomes cannot be predicted with absolute certainty.

Definition A.6. (Probability space) A probability space is a measure space,
(Ω,F , P), having the following three elements:

• A sample space: Ω, the set containing all possible outcomes.

• A σ-algebra in Ω: F , a set containing subsets of Ω. Each subset of Ω is
called an event.

• A probability measure: P : F → [0, 1], a countably additive set function
on F . This function assigns a probability to each element of F .

A.2.2 Random Variable

Random variables represent mappings from the space of possible outcomes to a
measurable space.

Definition A.7. (Random variable) An A-valued random variable, A, is a
measurable function from the sample space, Ω, to a measurable space: (A, ΣA):
A : Ω→ A.

Note. The set: A contains all possible realizations of A, this set is often referred
to as the alphabet of A.
Note. In this thesis, the measurable space of interest is the set of real numbers
(vectors), or a union of subintervals thereof. For continuous random variables
(vectors), the corresponding measurable space is

(
Rn,B(Rn)

)
, with B(Rn),

the Borel σ-algebra. For discrete random variables (vectors), the measurable
space consists of some discrete subset, A ⊂ Rn, containing a finite or infinitely
countable number of elements and a corresponding σ-algebra, ΣA ⊆ 2A.

Definition A.8. (Real-valued random variable) A real-valued random variable,
A, is a measurable function from the sample space, Ω, to a subset of the real
numbers: A : Ω→ A ⊆ Rn.
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Note. Random variables mapping to the set of real numbers are called real-
valued random variables. In this thesis, only real-valued random variables are
considered and the prefix real-valued is therefore further omitted.
Note. For a random variable, A, a set of realizations, S ∈ ΣA, can be
related to the event: A−1(S) =

{
ω ∈ Ω | A(ω) ∈ S

}
. The notation:

P[A ∈ S] = A∗(P)[S] = P
[
A−1(S)

]
, is used to denote the probability of

observing a realization in S. The push-forward measure of P on (A, ΣA) by A,
is denoted by A∗(P). When the set: S, contains only one element, e.g. S = {a},
the notation: P[A = a] = P

[
A ∈ {a}

]
, is used as well.

A.2.3 Probability Density/Mass Function

The Probability Density Function (PDF) for a continuous or Probability Mass
Function (PMF) for a discrete random variable assigns a positive real value to
each realization.

Definition A.9. (PDF/PMF) The PDF/PMF for an A-valued random variable
(scalar, vector or matrix), A : Ω → A ⊆ Rn×m, is a measurable function,
fA : A → R≥0, with the following property:

∀S ∈ ΣA : P[A ∈ S] =
∫

A−1(S)
P[dω] =

∫
S

fA(a)M[da],

with M[·], the reference measure on (A, ΣA).

Note. In this thesis, the reference measure, M[·], equals the Lebesgue measure
for continuous random variables or the counting measure for discrete random
variables. The counting measure equals the set cardinality if it has a finite
number of elements.
Note. The PMF for a discrete random variable, A : Ω→ A ⊂ Rn×m, has the
following form:

fA(a) = P[A = a] = P
[
A−1({a})].

This can be seen by the fact that S is a discrete set and therefore P[A ∈ S] =∑
a∈S P[A = a].

Definition A.10. (Joint PDF/PMF) Consider the individual elements: Ai :
Ω→ Ai ⊆ Rn for i ∈ Nm, of an n×m-dimensional random vector or matrix:
A : Ω→ A ⊆ Rn×m, A = [A0, A1, . . . , Am−1]. A joint PDF/PMF is defined as
fA0,A1,...,Am−1 :×m−1

i=0 Ai → R≥0 by

fA0,A1,...,Am−1(a0, a1, . . . , am−1) = fA

(
[a0, a1, . . . , am−1]

)
.
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A.2.4 Cumulative Distribution Function

The Cumulative Distribution Function (CDF) for a random variable gives the
probability that a realization less than or equal to some value will be observed.

Definition A.11. (CDF) The CDF for a random variable (scalar, vector
or matrix), A : Ω → A ⊆ Rn×m, is a right-continuous monotone increasing
function, FA : Rn×m → [0, 1], satisfying the following limits:

∀i ∈ Nn,∀j ∈ Nm : lim
xi,j→−∞

FA(x) = 0,

lim
x→∞n×m

FA(x) = 1,

with x→∞n×m, indicating that all elements of x approach positive infinity.
The CDF evaluates to

∀x ∈ Rn×m : FA(x) = P
[
{ω ∈ Ω | ∀i ∈ Nn,∀j ∈ Nm : Ai,j(ω) ≤ xi,j}

]
.

As for the PDF, the joint CDF is defined by using the vector or matrix CDF.

Definition A.12. (Joint CDF) Consider the individual elements: Ai : Ω →
Ai ⊆ Rn for i ∈ Nm, of an n × m-dimensional random vector or matrix:
A : Ω → A ⊆ Rn×m, A = [A0, A1, . . . , Am−1]. A joint CDF is defined as
FA0,A1,...,Am−1 :×m−1

i=0 Ai → [0, 1] by

FA0,A1,...,Am−1(x0, x1, . . . , xm−1) = FA

(
[x0, x1, . . . , xm−1]

)
.

Note. For a one-dimensional random variable, by the Radon-Nikodym theorem
and using definition A.9, the PDF/PMF equals

fA(a) = dA∗(P)
dM = A∗(P)[dx]

M[dx] .

When the random variable is continuous:

fA(a) = A∗(P)[dx]
M[dx] (a) = dFA

dx
(a).

When the random variable is discrete:

fA(a) = A∗(P)[dx]
M[dx] (a) = A∗(P)[dx](a) = FA(a)− lim

x→a−
FA(x) = P

[
{a}
]
.

Note. Given a set of realizations: S ⊂ R, in the form of an interval, S = (x0, x1],
the probability for a realization in this set can be described using the CDF:
P[A ∈ S] = FA(x1)− FA(x0). For a discrete random variable, A : Ω→ A ⊂ R,
the CDF becomes FA(x) =

∑
a∈S P[A = a], with S the set containing all

possible realizations smaller than or equal to x: S = {a ∈ A | a ≤ x}.
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A.2.5 Expectation

The expectation operator enables the description of the expected (average)
outcome for a random variable. Additionally, it provides a means of expressing
the expected spread and similarity between two random variables.

Expected Value

The expected value operator, E, assigns a mean value to a random variable.

Definition A.13. (Expected value) The expected value is a linear function,
E : {Ω → Rn×m} → Rn×m, working on random variables (scalars, vectors or
matrices):

E[A] =
∫

Ω
AdP =

∫
Ω

A(ω)P[dω] =
∫

A
afA(a)M[da],

for any random variable: A : Ω→ A ⊆ Rn×m.

Note. The expected value, E[A], has the same shape as the original random
variable, A.
Note. In case of a discrete random variable, the integral can be replaced by a
weighted sum over all realizations:

E[A] =
∑
ω∈Ω

A(ω)P
[
{ω}

]
=
∑
a∈A

aP[A = a].

Note. The expected value of a matrix is the matrix containing the expected
value of its elements:

E[A] =


E[A0,0] E[A0,1] . . . E[A0,m−1]
E[A1,0] E[A1,1] . . . E[A1,m−1]

...
... . . . ...

E[An−1,0] E[An−1,1] . . . E[An−1,m−1]

 .

Covariance and Correlation

The covariance between two random variables is a measure of similarity.

Definition A.14. (Covariance) The covariance is a function, Cov : {Ω →
Rn} × {Ω→ Rm} → Rn×m, working on pairs of random variables (scalars or
vectors):

Cov[A, C] = E
[(

A−E[A]
)(

C −E[C]
)⊺]

,
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for any two random variables (scalars or vectors): A : Ω→ A ⊆ Rn, C : Ω→
C ⊆ Rm.

The correlation is related to the covariance.

Definition A.15. (Correlation) The correlation is a function, Cor : {Ω →
Rn} × {Ω→ Rm} → Rn×m, working on pairs of random variables (scalars or
vectors):

Cor[A, C] = E
[
AC⊺

]
= Cov[A, C] + E[A]E⊺[C],

for any two random variables (scalars or vectors): A : Ω→ A ⊆ Rn, C : Ω→
C ⊆ Rm.

Variance

The variance of a random variable is the covariance of the random variable with
itself.

Definition A.16. (Variance) The variance is a function, Var : {Ω→ Rn} →
Rn×n, working on random variables (scalars or vectors):

Var[A] = E
[(

A−E[A]
)(

A−E[A]
)⊺] = Cov[A, A],

for any random variable (scalar or vector): A : Ω→ A ⊆ Rn.

A.3 Random Process

A random process describes a collection of random variables to the same
measurable space, indexed by some index set.

Definition A.17. (Random process) An A-valued random process,
{

A(t)
}

t∈T

or A(ω, t), is a function from the sample space, Ω, and the index set, T , to a
measurable space: (A, ΣA), Ω× T → A.

Note. In this thesis, the index set of interest is a subset of the real line.

A realization of a random process can be regarded as a function from the index
set to this measurable space.

Definition A.18. (Realization of a random process) A realization of an A-
valued random process,

{
A(t)

}
t∈T

, for a random outcome, ω, is a function:
a : T → A by a(t) = A(ω, t).
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Evaluating the random process at a given index, yields a random variable.

Definition A.19. (Evaluation of a random process) An evaluation of an A-
valued random process,

{
A(t)

}
t∈T

, at an index, ti ∈ T , yields an A-valued
random variable: A(ti) : Ω→ A.

A.3.1 Expectation

A mean function is defined, assigning a mean value for the random process to
each index in the index set.

Definition A.20. (Mean function) Given an A-valued random process:{
A(t)

}
t∈T

: Ω × T → A ⊆ Rn×m, the mean function is defined as µA : T →
Rn×m by µA(t) = E

[
A(t)

]
.

For two real-valued random processes, the Cross-Correlation Function (CCF)
describes the correlation between the evaluations of these processes.

Definition A.21. (CCF) Given two real-valued (scalar or vector) random
processes:

{
A(t)

}
t∈T

: Ω× T → A ⊆ Rn and
{

C(u)
}

u∈U
: Ω× U → C ⊆ Rm,

the CCF is defined as

RAC : T × U → Rn×m by RAC(t, u) = Cor
[
A(t), C(u)

]
= E

[
A(t)C⊺(u)

]
.

A cross-covariance function can also be defined.

Definition A.22. (Cross-covariance function) Given two real-valued (scalar
or vector) random processes:

{
A(t)

}
t∈T

: Ω× T → A ⊆ Rn and
{

C(u)
}

u∈U
:

Ω× U → C ⊆ Rm, the cross-covariance function is defined as

KAC : T × U → Rn×m by KAC(t, u) = Cov
[
A(t), C(u)

]
= E

[(
A(t)− µA(t)

)(
C(u)− µC(u)

)⊺]
= RAC(t, u)− µA(t)µ⊺

C(u).

The Auto-Correlation Function (ACF) equals the CCF of the process with itself.

Definition A.23. (ACF) Given a real-valued (scalar or vector) random process:{
A(t)

}
t∈T

: Ω× T → A ⊆ Rn, the ACF is defined as

RA : T 2 → Rn×n by RA(ti, tj) = RAA(ti, tj) = E
[
A(ti)A⊺(tj)

]
.
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Similarly, an auto-covariance function can be defined as well.
Definition A.24. (Auto-covariance function) Given a real-valued (scalar or
vector) random process:

{
A(t)

}
t∈T

: Ω × T → A ⊆ Rn, the auto-covariance
function is defined as

KA : T 2 → Rn×n by KA(ti, tj) = KAA(ti, tj) = Cov
[
A(ti), A(tj)

]
= E

[(
A(ti)− µA(ti)

)(
A(tj)− µA(tj)

)⊺]
= RA(ti, tj)− µA(ti)µ⊺

A(tj).

A.3.2 Stationarity

A random process with a subset of the real coordinate space, Rn, as its index
set is strict-sense stationary when its properties do not change with an index
shift.
Definition A.25. (Strict-sense stationary) Given a random process (scalar or
vector):

{
A(t)

}
t∈T

: Ω × T → A ⊆ Rm, with as an index set a subset of the
real coordinate space, T ⊆ Rn. This random process is strict-sense stationary if

∀k ∈ N,∀t0, t1, . . . , tk ∈ T,

∀τ ∈ Rn | t0 + τ, t1 + τ, . . . , tk + τ ∈ T, ∀x0, x1, . . . , xk ∈ Rm :

FA(t0),A(t1),...,A(tk)(x0, x1, . . . , xk)

= FA(t0+τ),A(t1+τ),...,A(tk+τ)(x0, x1, . . . , xk).

Less stringent requirements on the random process lead to the Wide-Sense
Stationary (WSS) property.
Definition A.26. (WSS) Given a random process (scalar or vector):{

A(t)
}

t∈T
: Ω × T → A ⊆ Rm, with as an index set a subset of the real

coordinate space, T ⊆ Rn. This random process is WSS if
∀t ∈ T, ∀τ ∈ Rn | t + τ ∈ T : µA(t) = µA(t + τ),

∀ti, tj ∈ T, ∀τ ∈ Rn | ti + τ, tj + τ ∈ T : RA(ti, tj) = RA(ti + τ, tj + τ),
∀t ∈ T : E

[
|A(t)|2

]
<∞.

Note. When a random process is WSS, the mean function is constant and the
ACF only depends on the time shift: RA(ti, tj) = RA(0, tj − ti). Whenever
tj − ti /∈ T , the domain for the ACF is extended and this relation defines the
value of the ACF at that index. The notation: RA(tj − ti) = RA(0, tj − ti), is
used.
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A.3.3 Spectrum

The Power Spectral Density (PSD) is a density function through the Fourier
frequency, representing the power density carried by a specific spectral
component of a random process. When integrated in a frequency band, the
power dissipation by the process after a band-pass filter is obtained.

Definition A.27. (PSD) The auto-PSD (or just PSD), for a continuous random
process (scalar),

{
A(t)

}
t∈T ⊆R : Ω×T → A ⊆ R and corresponding windowed FT

random process:
{

C∆(f)
}

f∈F ⊆R : Ω×F → C by C∆(ω, f) = F
{

w∆(t)A(ω, t)
}

,
is a positive-valued function of the Fourier frequency: SA : F → R≥0, defined as

∀f ∈ F : SA(f) = lim
∆→∞

1
∆E

[∣∣C∆(f)
∣∣2],

When
{

A(t)
}

t∈T
is a WSS process and its PSD exists, then this process’ ACF

and PSD form an FT pair: ∀f ∈ R : SA(f) = F
{

RA(τ)
}

. This relation is
known as the Wiener-Khinchin theorem.

A.4 Conditionality

Conditional probability mathematics provides a method to revise knowledge
of a random variable or event, incorporating additional information beyond
previously available prior knowledge.

A.4.1 Conditional Expectation

The conditional expectation yields the expected value, given the knowledge that
a specified event occurred with certainty.

Conditioned on an Event

The conditional expectation of a random variable, given an event with non-zero
probability generates a deterministic element with identical dimension as the
original random variable.

Definition A.28. (Expectation conditioned on an event) Given a random
variable (scalar or vector): A : Ω → A ⊆ Rn and an event with non-zero
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probability: E ∈ F , P[E] ̸= 0, the conditional expectation of A, given E is a
deterministic element (scalar or vector), E[A | E] ∈ Rn, defined as

E[A | E] =
∫

E
AdP

P[E] .

Note. For a random variable, A : Ω→ A ⊆ Rn, and another discrete random
variable, C : Ω→ C ⊂ Rm, the conditional expectation, given the event: C−1(c)
(C has a realization equal to c ∈ C, with non-zero probability) equals

E[A | C−1(c)] =
∫

ω∈C−1(c) A(ω)P[dω]
P[C = c] =

∫
a∈Sc

afA,C(a, c)da

fC(c) , (A.3)

with Sc = A
(
C−1(c)

)
=
{

A(ω) | ω ∈ C−1(c)
}

and fA,C : Rn × Rm → R≥0,
the joint mixed distribution function for A and C. A shorthand notation:
E[A | C = c] = E[A | C−1(c)], is used.
Note. The conditional expectation, E[A | C = ·], can be regarded as a function:
µA|C : C → Rn by µA|C(c) = E[A | C = c].

Conditioned on a Realization

The result from eq. (A.3) cannot be used when conditioning on the realization
of a continuous random variable, C, as the event: C−1(c), has zero probability:
P[C = c] = 0. Instead, the conditional expectation, given a realization of
another random variable is defined using the PDF/PMF.
Definition A.29. (Expectation conditioned on a realization) Given two random
variables (scalar or vector): A : Ω → A ⊆ Rn and C : Ω → C ⊆ Rm, with
PDF/PMF: fC and joint PDF/PMF: fA,C . The conditional expectation of
A, given a realization: c ∈ C, is a deterministic element (scalar or vector),
E[A | C = c] ∈ Rn, defined as

E[A | C = c] =
∫

a∈A afA,C(a, c)da

fC(c) ,

when fC(c) ∈ R>0.
Note. When C is a discrete random variable, definition A.29 becomes equal to
eq. (A.3), as fA,C(a, c) = 0 for a /∈ Sc.

A.4.2 Conditional Probability

The conditional probability can be expressed in terms of the conditional
expectation, by making use of the indicator function for an event, 1E : Ω →
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{0, 1}. The indicator function acts as a discrete real-valued random variable,
producing a one if the event: E occurred and zero otherwise. The following
relations hold: P[E] = P[1E = 1] = f1E

(1) = E[1E ].

Conditioned on an Event

The conditional probability of an event, given another event with non-zero
probability occurred, generates a new probability.

Definition A.30. (Probability conditioned on an event) Given two events:
E ∈ F and F ∈ F , with P[F ] ̸= 0, the conditional probability of E, given
the occurrence of the event F , is a deterministic probability, P[E | F ] ∈ [0, 1],
defined as

P[E | F ] = E[1E | F ] =
∫

F
1EdP

P[F ] = P[E ∩ F ]
P[F ] .

Note. For an event: E ∈ F and a discrete random variable: C : Ω→ C ⊂ Rm,
the conditional probability of E, given the event: C−1(c) (C has a realization
equal to c ∈ C, with non-zero probability) equals

P[E | C−1(c)] =
∫

ω∈C−1(c) 1E(ω)P[dω]
fC(c) =

P
[
E ∩ C−1(c)

]
fC(c) , (A.4)

with fC the PMF for C.
Note. When the event, E, represents a realization of another discrete random
variable: E = A−1(a), with A : Ω → A ⊂ Rn, the conditional probability
becomes

P[A−1(a) | C−1(c)] =
P
[
A−1(a) ∩ C−1(c)

]
P[C = c] = fA,C(a, c)

fC(c) , (A.5)

with fA,C the joint PMF for A and C. The notation: P[A = a | C = c] is used
to denote this probability.

Conditioned on a Realization

Again, eq. (A.4) cannot be used when conditioning on the realization of a
continuous random variable: C. Instead, the conditional probability, given a
realization of a random variable is defined using the mixed joint probability
distribution function.

Definition A.31. (Probability conditioned on a realization) Given an event:
E ∈ F and a random variable: C : Ω→ C ⊆ Rm, with PDF/PMF: fC and mixed
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joint probability distribution function: f1E ,C . The conditional probability of E,
given a realization: c ∈ C, is a deterministic probability: P[E | C = c] ∈ [0, 1],
defined as

P[E | C = c] = E[1E | C = c] = f1E ,C(1, c)
fC(c) = f1E ,C(1, c)

f1E ,C(0, c) + f1E ,C(1, c) ,

when fC(c) ∈ R>0.

Note. When the event, E, represents the realization of a discrete random
variable: E = A−1(a), with A : Ω → A ⊂ Rn and a ∈ A, definition A.31
becomes similar to eq. (A.5).

A.4.3 Conditional Distribution

The conditional distribution function is a scaled version of the joint distribution
function.

Conditioned on an Event

The PDF/PMF for a random variable, given the occurrence of a non-zero
probability event changes into a conditional PDF/PMF.

Definition A.32. (Distribution conditioned on an event) Given an A-valued
random variable: A : Ω→ A and an event: E ∈ F with non-zero probability,
P[E] ̸= 0. The conditional PDF/PMF for A, given the occurrence of E is
fA|E : A → R≥0, defined as

fA|E(a) = fA,1E
(a, 1)

P[E] ,

with fA,1E
, the joint distribution for A and 1E , the indicator function for E.

Conditioned on a Realization

The PDF/PMF for a random variable, given the realization of a different random
variable is defined using the joint PDF/PMF.

Definition A.33. (Distribution conditioned on a realization) Given two random
variables: A : Ω→ A and C : Ω→ C, with joint PDF/PMF: fA,C and marginal
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PDF/PMF: fC for C. The conditional PDF/PMF for A, given a realization of
C: c ∈ C, is fA|C(· | c) : A → R≥0, defined as

fA|C(a | c) = fA,C(a, c)
fC(c) ,

when fC(c) ∈ R>0.

Note. Definition A.32 equals definition A.33 for an event: E = C−1(c) and C a
discrete random variable.
Note. A shorthand notation regarding conditional distribution functions is
used. The notation: A | C = c ∼ X (c) actually denotes the following relation:
∀a ∈ D : fA|C(a | c) = fD(a), with D : Ω → D ⊆ A, a dummy random
variable following a parameterized distribution with parameter c: D ∼ X (c).
Both A : Ω→ A and C : Ω→ C are random variables, with c ∈ C, a possible
realization for C.

A.5 Entropy

This section defines the flowing concepts: information content, entropy and
conditional entropy used in this thesis. All definitions in this section are only
valid for discrete random variables.

A.5.1 Information Content

The information content of an event provides a way to quantify the amount of
information gained upon observing the event.

Definition A.34. (Information content) The information content (surprisal)
is a function from the set of events to the non-negative real line, I : F → R≥0,
which equals

I[E] = −k ln
(
P[E]

)
,

for any E ∈ F and with the factor: k, determining the units.

Note. For binary units (bit), use k = 1
ln(2) .

Note. Given a discrete random variable: A : Ω → A, the event: A−1(a),
obtained by observing the realization a ∈ A, has the following information
content: I

[
A−1(a)

]
.
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Definition A.35. (Information content by a random variable) Given a discrete
random variable: A : Ω→ A, the information content function by A: IA : Ω→
R≥0, is a random variable, defined as

IA(ω) = I
[
A−1

({
A(ω)

})]
= I
[{

ω′ ∈ Ω | A(ω′) = A(ω)
}]

.

Similarly, a joint information content is defined.

Definition A.36. (Joint information content by random variables) Given two
discrete random variables: A : Ω → A and C : Ω → C, the joint information
content function by A and C, IA,C : Ω→ R≥0, is a random variable, defined as

IA,C(ω) = I
[{

ω′ ∈ Ω | A(ω′) = A(ω), C(ω′) = C(ω)
}]

.

A.5.2 Entropy for a Random Variable

From the information content, an entropy function is derived.

Shannon Entropy

The Shannon (average) entropy for a discrete random variable, introduced
in [78], quantifies the expected information gained when observing a realization
of this random variable.

Definition A.37. (Shannon entropy) Given a discrete random variable: A :
Ω→ A, with PMF: fA, the Shannon entropy, H : {Ω→ A} → R≥0, is defined
as

H[A] = E[IA] =
∫

Ω
IA(ω)P[dω] = −k

∑
a∈A

fA(a) ln
(
fA(a)

)
.

Min-Entropy

The min-entropy for a random variable equals the smallest amount of information
gained when observing a realization of this random variable.

Definition A.38. (Min-entropy) Given a discrete random variable: A : Ω→ A,
with PMF: fA(a), the min-entropy, Hm : {Ω→ A} → R≥0, is defined as

Hm[A] = min
ω∈Ω

IA(ω) = −k ln
(
max
a∈A

fA(a)
)
.
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Note. Any outcome: am ∈ argmaxa∈A P[A = a] would be used when guessing a
future realization of A. The probability: P[A = am] = e− Hm

k equals the success
rate of the optimal strategy for guessing A.

Joint Entropy

A joint entropy is similarly defined.

Definition A.39. (Joint entropy) Given two discrete random variables: A :
Ω → A and C : Ω → C, with joint PMF: fA,C . The joint Shannon entropy
and joint min-entropy for A and C: H, Hm : {Ω→ A} × {Ω→ C} → R≥0, are
defined as

H[A, C] = E[IA,C ] =
∫

Ω
IA,C(ω)P[dω] = −k

∑
a∈A,c∈C

fA,C(a, c) ln
(
fA,C(a, c)

)
,

Hm[A, C] = min
ω∈Ω

IA,C(ω) = −k ln
(

max
a∈A,c∈C

fA,C(a, c)
)
.

A.5.3 Conditional Entropy

The conditional entropy allows to express the expected or worst case information
content, given additional knowledge.

Conditioned on an Event

The Shannon entropy for a random variable, given the occurrence of an event
equals the average information content of a realization, given an occurrence of
the event, minus the information content of the event itself. The min-entropy is
accordingly defined.

Definition A.40. (Entropy conditioned on an event) Given a discrete random
variable: A : Ω→ A and a non-zero probability event: E ∈ F , P[E] ̸= 0. The
Shannon entropy and min-entropy for A, given E are equal to

H[A | E] = −k
∑
a∈A

fA|E(a) ln
(
fA|E(a)

)
=
∑
a∈A

fA|E(a)I[A−1(a) ∩ E]− I[E],

Hm[A | E] = −k ln
(
max
a∈A

fA|E(a)
)
.
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Note. When A is independent of E, then fA|E(a) = fA(a) and therefore
H[A | E] = H[A].

Conditioned on a Realization

Considering the event when a certain realization for a random variable is
observed, the Shannon- and min-entropy for a random variable conditioned on
the realization of a different random variable are defined.

Definition A.41. (Entropy conditioned on a realization) Given two discrete
random variables: A : Ω→ A and C : Ω→ C, with PMF: fC and joint PMF:
fA,C . The Shannon entropy and min-entropy for A, given a realization of C:
c ∈ C, with non-zero probability, P[C−1(c)] ̸= 0, are equal to

H[A | C = c] = H[A | C−1(c)] = −k
∑
a∈A

fA|C(a | c) ln
(
fA|C(a | c)

)
=
∑
a∈A

fA|C(a | c)I[A−1(a) ∩ C−1(c)]− I[C−1(c)],

Hm[A | C = c] = −k ln
(
max
a∈A

fA|C(a, c)
)
.

Conditioned on a Random Variable

The Shannon entropy for a random variable, conditioned on a different random
variable equals the average Shannon entropy, given a realization of the second
random variable. The min-entropy is similarly defined.

Definition A.42. (Entropy conditioned on a random variable) Given two
random variables: A : Ω→ A and C : Ω→ C, with PMF: fC and joint PMF:
fA,C . The Shannon entropy and min-entropy for A, given C are equal to

H[A | C] =
∑
c∈C

fC(c)H[A | C = c] = H[A, C]−H[C],

Hm[A | C] =
∑
c∈C

fC(c)Hm[A | C = c].

A.6 Key Probability Distributions

This section lists several probability distributions encountered in this thesis.
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A.6.1 Multivariate Normal Distribution

Definition A.43. (Multivariate normal distribution) An n× 1 random vector,
A⃗, that follows an n-dimensional multivariate normal distribution is noted as:
A⃗ ∼ Nn

(
µ⃗, Σ

)
, with mean vector: µ⃗ and covariance matrix: Σ.

The PDF for an n-dimensional multivariate normal distribution, noted as
ϕNn

(a⃗; µ⃗, Σ), is equal to

fA⃗(a⃗) = ϕNn
(a⃗; µ⃗, Σ) =

exp
(
− 1

2 (a⃗− µ⃗)⊺Σ−1(a⃗− µ⃗)
)

√
(2π)n|Σ|

,

with | · |, the matrix determinant.
Note. The CDF for a multivariate normal distribution is denoted as
ΦNn

(a⃗; µ⃗, Σ).
Note. When the dimension, n, exceeds one, there is no closed form available for
the CDF. One must resort to numerical integration methods to determine the
CDF value.
Note. When the dimension n equals one, the dimension subscript is omitted:
N is used instead of N1.
Note. The PDF and CDF of a standard normal distributed variable (one-
dimensional, normally distributed with mean µ⃗ = 0 and variance Σ = 1) are
denoted as ϕs and Φs, respectively.

A.6.2 Gaussian Process

A Gaussian process is a random process that, when sampled at any finite
collection of time instances, generates a multivariate normal distribution.

Definition A.44. (Gaussian process) A random process:
{

A(t)
}

t∈T
, is a

Gaussian process if and only if (iff)

∀n ∈ N ̸=0,∀t0, t1, . . . , tn−1 ∈ T : A⃗ =
[
A(t0), A(t1), . . . , A(tn−1)

]⊺ ∼ Nn.

Note. The Gaussian process,
{

A(t)
}

t∈T
, is completely described by a mean

function: µA(t) = E
[
A(t)

]
and an ACF: RA(ti, tj) = E

[
A(ti)A(tj)

]
.

Note. As only metrics of at most second degree are required to fully describe
the Gaussian process, it is stationary in the strict sense iff it is WSS.
Note. A Wiener process with drift µ, and infinitesimal variance σ2, is a Gaussian
process with mean function: ∀t ∈ R≥0 : µW (t) = µt, and ACF: ∀ti, tj ∈ R≥0 |
ti ≤ tj : RW (ti, tj) = µW (ti)µW (tj) + σ2ti.
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A.6.3 Inverse-Gaussian Distribution

The inverse-Gaussian distribution is associated with the distribution of the time
it takes for a Brownian motion process to reach a fixed threshold (hitting time).

Definition A.45. (Inverse-Gaussian distribution) A random variable, A, that
follows an inverse-Gaussian distribution is noted as: A ∼ IG(µ, λ), with mean:
µ ∈ R>0 and shape: λ ∈ R>0.

The PDF for an inverse-Gaussian distribution, noted as ϕIG(a; µ, λ), is equal to

∀a ∈ R>0 : fA(a) = ϕIG(a; µ, λ) =
√

λ

2πa3 exp
(
−λ(a− µ)2

2µ2a

)
.

A.6.4 Degenerate Distribution

A random variable following a degenerate distribution centered around a
constant, has a realization equal to that constant with a probability of one.

Definition A.46. (Degenerate distribution) A random variable, A, that follows
a degenerate distribution is noted as: A ∼ µ, with mean: µ.

The PDF for a degenerate distribution is equal to a shifted Dirac delta
distribution: ∀a ∈ R : fA(a) = δ(a − µ). We have P[A = µ] = 1 and
∀a ∈ R ̸=µ : P[A = a] = 0.

A.6.5 Uniform Distribution

A random variable following a uniform distribution on the interval [ai, aj ], with
ai < aj , has an equal probability for each realization in that interval.

Definition A.47. (Uniform distribution) A random variable, A, that follows
a uniform distribution on the interval [ai, aj ], with ai < aj , is noted as: A ∼
U(ai, aj).

The PDF for a uniform distribution is equal to a constant: ∀a ∈ [ai, aj ] :
fA(a) = 1

aj−ai
.

Note. For a continuous random variable, the boundaries of the interval can be
open or closed without affecting the PDF. This is because the endpoints have
zero probability: P[A = ai] = P[A = aj ] = 0.
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